Search Results
You are looking at 1 - 10 of 14 items for
- Author or Editor: Atsushi Hiraga x
- Refine by Access: All Content x
Abstract
Objective—To develop an instrument that could be sandwiched between the hoof and shoe of horses and that would reliably measure vertical ground reaction forces and three-dimensional acceleration at the walk, trot, and canter.
Animals—5 clinically sound Thoroughbreds.
Procedures—The recording instrument (weight, 350 g) consisted of 2 metal plates, 2 bolts, 4 load cells, and 3 accelerometers. It was mounted to the hoof with a glue-on shoe and devised to support as much load exerted by a limb as possible. The load cells and accelerometers were wired to a 16-channel transmitter, and transmitted signals were received and amplified with a telemetry receiver.
Results—The recording instrument could measure in real time the 4 components of the ground reaction force or their resultant force along with acceleration in 3 dimensions as horses walked, trotted, or cantered on a treadmill. Patterns of force-time curves recorded for consecutive strides were similar to each other and to those previously reported, using a force plate.
Conclusions and Clinical Relevance—The recording instrument developed for use in the present study allowed us to record vertical ground reaction force and acceleration in 3 dimensions in horses at the walk, trot, and canter. (Am J Vet Res 2000;61:979–985)
Abstract
Objective—To determine the influence of transportation by road and air on heart rate (HR) and HR variability (HRV) in horses.
Animals—6 healthy horses.
Procedures—ECG recordings were obtained from horses before (quarantine with stall rest [Q]; 24 hours) and during a journey that included transportation by road (RT; 4.5 hours), waiting on the ground in an air stall (W; 5.5 hours), and transportation by air (AT; 11 hours); HR was determined, and HRV indices of autonomic nervous activity (low-frequency [LF; 0.01 to 0.07 Hz] and high-frequency [HF; 0.07 to 0.6 Hz] power) were calculated.
Results—Mean ± SD HRs during Q, RT, W, and AT were 38.9 ± 1.5 beats/min, 41.7 ± 5.6 beats/min, 41.5 ± 4.3 beats/min, and 48.8 ± 5.6 beats/min, respectively; HR during AT was significantly higher than HR during Q. The LF power was significantly higher during Q (3,454 ± 1,087 milliseconds2) and AT (3,101 ± 567 milliseconds2) than it was during RT (1,824 ± 432 milliseconds2) and W (2,072 ± 616 milliseconds2). During Q, RT, W, and AT, neither HF powers (range, 509 to 927 milliseconds2) nor LF:HF ratios (range, 4.1 to 6.2) differed significantly. The HR during RT was highly correlated with LF power (R 2 = 0.979), and HR during AT was moderately correlated with the LF:HF ratio (R 2 = 0.477).
Conclusions and Clinical Relevance—In horses, HR and HRV indices during RT and AT differed, suggesting that exposure to different stressors results in different autonomic nervous influences on HR.
Abstract
Objective—To examine the changes in monocarboxylate transporter (MCT) 1 and MCT4 content and in indicators of energy metabolism in the gluteus medius muscle (GMM) of Thoroughbreds during growth.
Animals—6 Thoroughbreds (3 males and 3 females).
Procedures—Samples of GMM were obtained when horses were 2, 6, 12, and 24 months old. Muscle proteins were separated via SDS-PAGE; amounts of MCT1 and MCT4 and peroxisome proliferator-activated receptor-γ coactivator-1α content were determined by use of western blotting. Muscle activities of phosphofructokinase and citrate synthase were measured biochemically; lactate dehydrogenase isoenzymes were separated by agarose gel electrophoresis and quantified.
Results—Compared with findings when horses were 2 months old, MCT1 protein content in GMM samples obtained when the horses were 24 months old was significantly higher; however, MCT4 protein content remained unchanged throughout the study period. Peroxisome proliferator-activated receptor-γ coactivator-1α content was significantly increased at 24 months of age and citrate synthase activity was increased at 6 and 24 months of age, compared with findings at 2 months. Phosphofructokinase activity remained unaltered during growth. The percentage contributions of lactate dehydrogenase 1 and 2 isoenzymes to the total amount of all 5 isoenzymes at 12 and 24 months of age were significantly higher than those at 2 months of age.
Conclusions and Clinical Relevance—Changes in protein contents of MCTs and the lactate dehydrogenase isoenzyme profile in GMM samples suggested that lactate usage capacity increases with growth and is accompanied by an increase in the oxidative capacity in Thoroughbreds.
Abstract
Objective—To determine the effects of initial handling and training on autonomic nervous functions in young Thoroughbreds.
Animals—63 healthy Thoroughbreds.
Procedure—All horses were trained to be handled and initially ridden in September of the yearling year and then trained until the following April by conventional training regimens. To obtain the heart rate (HR), electrocardiograms were recorded in the stable before initial handling and training and following 7 months of training; variations in HR were then evaluated from the power spectrum in terms of the low frequency (LF; 0.01 to 0.07 Hz) power and high frequency (HF; 0.07 to 0.6 Hz) power as indices of autonomic nervous activity. To evaluate the fitness, the V200 (velocity at HR of 200 beat/min), which is reflective of the aerobic capacity of the horse, was measured.
Results—Mean (± SE) resting HR decreased significantly from 41.5 ± 0.8 to 38.7 ± 0.4 beat/min following 7 months of training. The LF power of horses increased significantly from 1,037 ± 128 milliseconds2 in September of the yearling year to 2,944 ± 223 milliseconds2 in the following April. Similarly, the HF power increased significantly from 326 ± 30 milliseconds2 to 576 ± 39 milliseconds2 at the corresponding time points. The V200 increased significantly following training.
Conclusions and Clinical Relevance—Increases in LF and HF powers indicate that parasympathetic nervous activity increases in horses by 7 months of training. The decrease in resting HR may be dependent on the training-induced increase of parasympathetic nervous activity in Thoroughbreds. (Am J Vet Res 2002;63:1488–1491)
Abstract
Objective—To determine the effects of immersion in warm springwater (38° to 40°C) on autonomic nervous activity in horses.
Animals—10 male Thoroughbreds.
Procedure—Electrocardiograms were recorded from horses for 15 minutes during a warm springwater bath after being recorded for 15 minutes during stall rest. Variations in heart rate (HR) were evaluated from the power spectrum in terms of low frequency (LF, 0.01 to 0.07 Hz) power and high frequency (HF, 0.07 to 0.6 Hz) power as indices of autonomic nervous activity.
Results—Mean (±SE) HR during stall rest and immersion in warm springwater was 31.1 ± 1.7 and 30.3 ± 1.0 beat/min, respectively. No significant difference was found between the HR recorded during stall rest and that recorded during immersion in warm springwater. The HF power significantly increased from 1,361 ± 466 milliseconds2 during stall rest to 2,344 ± 720 milliseconds2 during immersion in warm springwater. The LF power during stall rest and immersion in warm springwater was 3,847 ± 663 and 5,120 ± 1,094 milliseconds2, respectively, and were not significantly different from each other. Similarly, the LF:HF ratio did not change during immersion in warm springwater. The frequency of second-degree atrioventricular block, which was observed in 2 horses, increased during immersion in warm springwater, compared with during stall rest.
Conclusions and Clinical Relevance—Increases in HF power indicates that the parasympathetic nervous activity in horses increases during immersion in warm springwater. Thus, immersion in warm springwater may provide a means of relaxation for horses. ( Am J Vet Res 2003;64:1482–1485)
Abstract
Objective—To determine prevalence of atrial fibrillation (AF) immediately after racing among racehorses that finished well behind the winners and examine potential risk factors for AF in these horses.
Design—Case-control study.
Animals—39,302 racehorses representing 404,090 race starts in races sanctioned by the Japan Racing Association between 1988 and 1997.
Procedure—Horses that finished ≥ 4 (turf races) or 5 (dirt races) seconds behind the winner or that did not complete the race were examined for AF within 5 minutes after the race. Logistic regression and χ 2 analyses were used to determine whether sex, age, race distance, race surface, year, or development of epistaxis was associated with development of AF.
Results—Estimated minimum frequency of AF was 0.03% (123 instances of AF following 404,090 race starts), and estimated minimum prevalence of AF among racehorses was 0.29% (115 horses with AF among 39,302 racehorses). Estimated frequency of AF among horses that finished slowly or did not finish was 1.39% (120 instances of AF among 8,639 examinations), and estimated prevalence of AF in horses that finished slowly was 1.23% (92 instances of AF among 7,500 horses) or 1.01% when only the first time a horse finished slowly was considered (76 instances of AF among 7,500 horses). Atrial fibrillation was paroxysmal in most horses. Among horses that finished slowly, 4-year-old and older horses and horses that raced on turf were more likely to develop AF.
Conclusions and Clinical Relevance—Results suggest that the likelihood of AF among racehorses that finish slowly is related to age and racing surface. (J Am Vet Med Assoc 2003;223:84–88)
Abstract
Objective—To determine the frequency of epistaxis during or after racing among racehorses and identify factors associated with development of epistaxis.
Design—Retrospective study.
Sample Population—247,564 Thoroughbred and 4,045 Anglo-Arab race starts.
Procedure—Race start information (breed, age, sex, racing distance, and race type) was obtained for Thoroughbred and Anglo-Arab horses racing in Japan Racing Association-sanctioned races between 1992 and 1997. All horses that raced were examined by a veterinarian within 30 minutes of the conclusion of the race; any horse that had blood at the nostrils was examined with an endoscope. If blood was observed in the trachea, epistaxis related to exercise-induced pulmonary hemorrhage (EIPH) was diagnosed.
Results—Epistaxis related to EIPH was identified following 369 race starts (0.15%). Frequency of EIPHrelated epistaxis was significantly associated with race type, age, distance, and sex. Epistaxis was more common following steeplechase races than following flat races, in older horses than in horses that were 2 years old, following races ≤ 1,600 m long than following races between 1,601 and 2,000 m long, and in females than in sexually intact males. For horses that had an episode of epistaxis, the recurrence rate was 4.64%.
Conclusions and Clinical Relevance—Results suggested that frequency of EIPH-related epistaxis in racehorses is associated with the horse's age and sex, the type of race, and the distance raced. The higher frequency in shorter races suggests that higher intensity exercise of shorter duration may increase the probability of EIPH. (J Am Vet Med Assoc 2001;218:1462–1464)
Abstract
Objective—To determine whether evaluation of heart rate (HR) and HR variability (HRV) during prolonged road transportation in horses provides a sensitive index of autonomic stimulation.
Animals—Five 2-year-old Thoroughbreds.
Procedure—ECGs were recorded as horses were transported for 21 hours in a 9-horse van. Heart rate, high-frequency (HF) power, low-frequency (LF) power, and LF-to-HF ratio from Fourier spectral analyses of ECGs were calculated and compared with values recorded during a 24-hour period of stall rest preceding transportation.
Results—HR, HF power, and LF power had diurnal rhythms during stall rest but not during road transportation. Heart rate was higher and HF power and LF power lower during road transportation than stall rest, and HR, HF power, LF power, and LF-to-HF ratio all decreased with time during road transportation. Heart rate during stall rest was weakly and inversely associated with LF power, but during road transportation was strongly associated with LF power, HF power, and LF-to-HF ratio. Neither LF power nor HF power was correlated with LF-to-HF ratio during stall rest, but LF power was strongly and HF power weakly correlated with LF-to-HF ratio during road transportation. High-frequency power and LF power were significantly correlated with each other during stall rest and road transportation. Heart rate was significantly influenced by LF power and LF-to-HF ratio during stall rest (R 2 = 0.40) and by HF power and LF-to-HF ratio during road transportation (R 2 = 0.86).
Conclusions and Clinical Relevance—HR is influenced by different sympathovagal mechanisms during stall rest, compared with during road transportation; HRV may be a sensitive indicator of stress in transported horses.
Abstract
Objective—To determine whether warm-up exercise at different intensities alters kinetics and total contribution of aerobic power to total metabolic power in subsequent supramaximal exercise in horses.
Animals—11 horses.
Procedures—Horses ran at a sprint until fatigued at 115% of maximal oxygen consumption rate (O2max), beginning at 10 minutes following each of 3 warm-up protocols: no warmup (NoWU), 1 minute at 70%
O2max (moderate-intensity warm-up [MoWU]), or 1 minute at 115%
O2max (high-intensity warm-up [HiWU]). Cardiopulmonary and blood gas variables were measured during exercise.
Results—The O2 was significantly higher in HiWU and MoWU than in NoWU throughout the sprint exercise period. Blood lactate accumulation rate in the first 60 seconds was significantly lower in MoWU and HiWU than in NoWU. Specific cardiac output after 60 seconds of sprint exercise was not significantly different among the 3 protocols; however, the arterial mixed-venous oxygen concentration difference was significantly higher in HiWU than in NoWU primarily because of decreased mixed-venous saturation and tension. Run time to fatigue following MoWU was significantly greater than that with NoWU, and there was no difference in time to fatigue between MoWU and HiWU.
Conclusions and Clinical Relevance—HiWU and MoWU increased peak values for O2 and decreased blood lactate accumulation rate during the first minute of intense exercise, suggesting a greater use of aerobic than net anaerobic power during this period.
Abstract
OBJECTIVE To determine whether racehorses undergoing regular exercise at 2 intensities or stall rest during a period of reduced training (detraining) would differentially maintain their cardiopulmonary and oxygen-transport capacities.
ANIMALS 27 Thoroughbreds.
PROCEDURES Horses trained on a treadmill for 18 weeks underwent a period of detraining for 12 weeks according to 1 of 3 protocols: cantering at 70% of maximal rate of oxygen consumption (o2max) for 3 min/d for 5 d/wk (canter group); walking for 1 h/d for 5 d/wk (walk group); or stall rest (stall group). Standardized treadmill exercise protocols (during which cardiopulmonary and oxygen-transport variables were measured) were performed before and after detraining.
RESULTS Mass-specific o2max, maximal cardiac output, and maximal cardiac stroke volume of all groups decreased after 12 weeks of detraining with no differences among groups. After detraining, arterial-mixed-venous oxygen concentration difference did not decrease in any group, and maximal heart rate decreased in the walk and stall groups. Run time to exhaustion and speeds eliciting
o2max and maximal heart rate and at which plasma lactate concentration reached 4mM did not change in the canter group but decreased in the walk and stall groups.
CONCLUSIONS AND CLINICAL RELEVANCE Horses following the cantering detraining protocol maintained higher values of several performance variables compared with horses following the walking or stall rest protocols. These results suggested that it may be possible to identify a minimal threshold exercise intensity or protocol during detraining that would promote maintenance of important performance-related variables and minimize reductions in oxygen-transport capacity in horses.