Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Anna R. Gelzer x
  • Cardiovascular System x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare cardiac troponin I (cTnI) concentrations determined by use of a point-of-care analyzer with values determined by use of a bench-top immunoassay in plasma samples obtained from clinically normal horses with and without experimentally induced cardiac disease, and to establish a reference range for plasma equine cTnI concentration determined by use of the point-of-care analyzer.

Animals—83 clinically normal horses, 6 of which were administered monensin to induce cardiac disease.

Procedures—A blood sample was collected from each of the 83 clinically normal horses to provide plasma for analysis by use of the point-of-care analyzer; some of the same samples were also analyzed by use of the immunoassay. All 83 samples were used to establish an analyzer-specific reference range for plasma cTnI concentration in clinically normal horses. In 6 horses, blood samples were also collected at various time points after administration of a single dose of monensin (1.0 to 1.5 mg/kg) via nasogastric intubation; plasma cTnI concentration in those samples was assessed by use of both methods.

Results—The analyzer-specific reference range for plasma cTnI concentration in clinically normal horses was 0.0 to 0.06 ng/mL. Following monensin treatment in 5 horses, increases in plasma cTnI concentration determined by use of the 2 methods were highly correlated (Pearson correlation, 0.83). Peak analyzer-determined plasma cTnI concentrations in monensin-treated horses ranged from 0.08 to 3.68 ng/mL.

Conclusions and Clinical Relevance—In horses with and without experimentally induced cardiac disease, the point-of-care analyzer and bench-top immunoassay provided similar values of plasma cTnI concentration.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the type of atrial fibrillation induced by use of 2 pacing protocols during fentanyl and pentobarbital anesthesia before and after administration of atropine and to determine the organization of electrical activity in the left and right atria during atrial fibrillation in German Shepherd Dogs.

Animals—7 German Shepherd Dogs.

Procedures—Extrastimulus and pacedown protocols were performed before and after atropine administration. Monophasic action potential spectral entropy and mean dominant frequency were calculated during atrial fibrillation.

Results—Atrial fibrillation occurred spontaneously in 6 of 7 dogs. All 7 dogs had atrial fibrillation induced. Sustained atrial fibrillation occurred in 13 of 25 (52%) episodes induced by the extrastimulus protocol and in 2 of 12 episodes of atrial fibrillation induced by pacedown. After atropine administration, sustained atrial fibrillation did not occur, and the duration of the nonsustained atrial fibrillation (6 episodes in 2 dogs of 1 to 26 seconds) was significantly shorter than before atropine administration (25 episodes in 7 dogs of 1 to 474 seconds). The left atrium (3.67 ± 0.08) had lower spectral entropy than the right atrium (3.81 ± 0.03), indicating more electrical organization in the left atrium. The mean dominant frequency was higher in the left atrium in 3 dogs.

Conclusions and Clinical Relevance—Atrial fibrillation developed spontaneously and was induced in German Shepherd Dogs under fentanyl and pentobarbital anesthesia. Electrical activity was more organized in the left atrium than in the right atrium as judged by use of spectral entropy.

Full access
in American Journal of Veterinary Research