Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Wei Hou x
  • Refine by Access: Content accessible to me x
Clear All Modify Search


Objective—To determine whether rosiglitazone, an agonist of the peroxisome proliferator-activated receptor (PPAR) γ, could alleviate intestinal damage induced by Escherichia coli lipopolysaccharide (LPS) in weaned pigs.

Animals—18 weaned pigs (mean ± SD age, 28 ± 3 days).

Procedures—Pigs were allocated to 3 treatments (6 pigs/treatment). Control pigs were injected IP with dimethyl sulfoxide and then injected 30 minutes later with sterile saline (0.9% NaCl) solution, LPS-treated pigs were injected IP with dimethyl sulfoxide and then injected 30 minutes later with LPS (100 μg/kg, IP), and rosiglitazone plus LPS-treated pigs were injected with rosiglitazone (3 mg/kg, IP) and then injected 30 minutes later with LPS (100 μg/kg, IP). Pigs were euthanized 3 hours after challenge exposure, and samples of the small intestines were collected for histologic, biochemical, and immunohistochemical examination.

Results—Rosiglitazone alleviated LPS-induced intestinal damage, which was manifested as a lower crypt depth in the duodenum and a higher villus height-to-crypt depth ratio in the duodenum, jejunum, and ileum. Rosiglitazone also mitigated inhibition of crypt cell proliferation in the jejunum and ileum induced by LPS injection. Pretreatment with rosiglitazone significantly increased the number of cells that stained for PPARγ and significantly decreased the number of cells that stained for inducible nitric oxide synthase.

Conclusions and Clinical Relevance—Rosiglitazone alleviated intestinal damage induced by LPS injection in weaned pigs. The protective effects of rosiglitazone on the intestines may be associated with inhibition of intestinal proinflammatory mediators, such as inducible nitric oxide synthase. (Am J Vet Res 2010;71:1331–1338)

Full access
in American Journal of Veterinary Research



Orthohantaviruses (genus Orthohantavirus, family Hantaviridae of order Bunyavirales) are rodent-borne viruses causing 2 human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which are mainly prevalent in Eurasia and the Americas, respectively. We initiated this study to investigate and analyze the Orthohantaviruses infection in rodent reservoirs and humans in the Hubei Province of China from 1984 to 2010.


The study included 10,314 mouse and 43,753 human serum samples.


In this study, we analyzed the incidence of Orthohantavirus infection in humans and observed changes in rodent reservoirs in Hubei Province.


The results indicated that although the incidence of HFRS declined from the 1990s, the human inapparent infection did not decrease dramatically. Although elements of the disease ecology have changed over the study period, Apodemus agrarius and Rattus norvegicus remain the major species and a constituent ratio of Rattus norvegicus increased. Rodent population density fluctuated between 16.65% and 2.14%, and decreased quinquennially, showing an obvious downward trend in recent years. The average orthohantaviruses-carrying rate was 6.36%, of which the lowest rate was 2.92% from 2006 to 2010. The analysis of rodent species composition showed that Rattus norvegicus and Apodemus agrarius were the dominant species over time (68.6% [1984 to 1987] and 90.4% [2000 to 2011]), while the composition and variety of other species decreased. The density of rodents was closely related to the incidence of HFRS (r = 0.910, P = .032).


Our long-term investigation demonstrated that the occurrence of HFRS is closely related to rodent demographic patterns. Therefore, rodent monitoring and rodent control measures for prevention against HFRS in Hubei are warranted.

Open access
in American Journal of Veterinary Research