Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Alison J. Morton x
  • Refine by Access: Content accessible to me x
Clear All Modify Search


Objective—To induce ischemia and reperfusion injury in the large colon mucosa of horses in vivo and evaluate the recovery and effects of components of an organ transplant solution on mucosal recovery in vitro.

Animals—6 healthy horses.

Procedures—Horses were anesthetized, and ischemia was induced for 60 minutes in the pelvic flexure, which was followed by reperfusion for 240 minutes. Ischemic (n = 4 horses), reperfused (6), and adjacent control (6) colonic mucosae were isolated for in vitro testing and histologic examinations. Tissues were mounted in Ussing chambers with plain Krebs Ringer bicarbonate (KRB), KRB with N-acetylcysteine (NAC), or KRB with a modified organ transplant solution (MOTS). Transepithelial electrical resistance (TER) and mannitol flux were used to assess mucosal integrity. Data were analyzed by use of ANOVA and Kruskal-Wallis tests.

Results—The TER in reperfused tissues was similar to the TER in control tissues and greater than the TER in ischemic tissues, which was consistent with morphological evidence of recovery in reperfused tissues. Mannitol flux was greater in ischemic tissues than in reperfused tissues. The TER and mannitol flux were not significantly affected by incubation of mucosa with NAC or MOTS.

Conclusions and Clinical Relevance—Ischemia induced during the brief period allowed rapid mucosal repair and complete recovery of tissue barrier properties during reperfusion. Therefore, reperfusion injury was not observed for this method of ischemic damage in equine colonic mucosa.

Full access
in American Journal of Veterinary Research


Objective—To identify expression and localization of cyclooxygenase (COX)-1 and COX-2 in healthy and ischemic-injured left dorsal colon of horses.

Sample Population—Left dorsal colon tissue samples from 40 horses.

Procedures—Tissue samples that were used in several related studies on ischemia and reperfusion were evaluated. Samples were collected during anesthesia, before induction of ischemia, and following 1 hour of ischemia, 1 hour of ischemia and 30 minutes of reperfusion, 2 hours of ischemia, 2 hours of ischemia and 30 minutes of reperfusion, and 2 hours of ischemia and 18 hours of reperfusion. Histomorphometric analyses were performed to characterize morphological injury. Immunohistochemical analyses were performed to characterize expression and localization of COX-1 and COX-2.

Results—COX-1 and COX-2 were expressed in control tissues before ischemia was induced, predominantly in cells in the lamina propria. Ischemic injury significantly increased expression of COX-2 in epithelial cells on the colonic surface and in crypts. A similar significant increase of COX-1 expression was seen in the epithelial cells.

Conclusions and Clinical Relevance—On the basis of information on the role of COX-2, upregulation of COX-2 in surface epithelium and crypt cells following ischemic injury in equine colon may represent an early step in the repair process.

Full access
in American Journal of Veterinary Research