Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yan Li x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

Porcine interferon-γ (poIFN-γ) and porcine granulocyte-macrophage colony-stimulating factor (poGM-CSF) are multifunctional cytokines that exhibit robust antiviral activity against porcine reproductive and respiratory syndrome virus (PRRSV). In this study, the immunoadjuvant effects of recombinant poIFN-γ-poGM-CSF fusion protein in inactivated PRRSV vaccine administered to piglets were assessed.

ANIMALS

Twenty-eight 4-week-old specific pathogen-free piglets.

METHODS

The experimental piglets were divided into control, highly pathologic PRRSV, PRRSV killed virus vaccine (KV), poIFN-γ-poGM-CSF, KV + 1.0 mg poIFN-γ-poGM-CSF, KV + 2.0 mg poIFN-γ-poGM-CSF, and KV + 4.0 mg poIFN-γ-poGM-CSF groups. A recombinant poIFN-γ-linker-poGM-CSF fusion gene was constructed via splicing by overlap extension PCR and prepared using an Escherichia coli expression system, after which its adjuvant activity in the context of PRRSV KV administration was assessed.

RESULTS

This analysis revealed the successful construction of the poIFN-γ-linker-poGM-CSF fusion gene via splicing by overlap extension PCR, with recombinant poIFN-γ-linker-poGM-CSF successfully being prepared in E coli with a plasmid vector for expressing thioredoxin fusion proteins with an enterokinase site. Importantly, the coadministration of poIFN-γ-linker-poGM-CSF and PRRSV KV significantly increased neutralizing antibody titers, accelerated viral clearance, reduced clinical symptoms, and prevented highly pathogenic PRRSV infection.

CLINICAL RELEVANCE

The recombinant poIFN-γ-poGM-CSF fusion protein is a promising candidate adjuvant for use in the context of swine immunization and viral challenge.

Open access
in American Journal of Veterinary Research

Abstract

Objective—To identify cardiac mechanisms that contribute to adaptation to high altitudes in Tibetan antelope (Pantholops hodgsonii).

Animals—9 male Tibetan antelope and 10 male Tibetan sheep (Ovis aries).

Procedures—Tibetan antelope and Tibetan sheep inhabiting a region with an altitude of 4,300 m were captured, and several cardiac variables were measured. Expression of genes for atrial natriuretic peptide, brain natriuretic peptide, and calcium-calmodulin–dependent protein kinase II δ was measured via real-time PCR assay.

Results—Ratios of heart weight to body weight for Tibetan antelope were significantly greater than those of Tibetan sheep, but ratios of right-left ventricular weights were similar. Mean ± SD baseline heart rate (26.33 ± 6.15 beats/min) and systolic arterial blood pressure (97.75 ± 9.56 mm Hg) of antelope were significantly lower than those of sheep (34.20 ± 6.57 beats/min and 130.06 ± 17.79 mm Hg, respectively). The maximum rate of rise in ventricular pressure in antelope was similar to that in Tibetan sheep, but after exposure to air providing a fraction of inspired oxygen of 14.6% or 12.5% (ie, hypoxic conditions), the maximum rate of rise in ventricular pressure of the antelope increased significantly to 145.1% or 148.1%, respectively, whereas that of the sheep decreased to 68.4% or 70.5%, respectively. Gene expression of calcium-calmodulin–dependent protein kinase II δ and atrial natriuretic peptide, but not brain natriuretic peptide, in the left ventricle of the heart was significantly higher in antelope than in sheep.

Conclusions and Clinical Relevance—Hearts of the Tibetan antelope in this study were well adapted to high-altitude hypoxia as shown by higher heart weight ratios, cardiac contractility in hypoxic conditions, and expression of key genes regulating cardiac contractility and cardiac hypertrophy, compared with values for Tibetan sheep.

Full access
in American Journal of Veterinary Research