Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: William E. Davis x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objectives

To determine the most repeatable method for evaluating right ventricular relaxation rate in horses and to determine and compare effects of isoflurane or halothane with and without the added influence of intravenously administered calcium gluconate on right ventricular relaxation rates in horses.

Animals

6 Thoroughbred horses from 2 to 4 years old.

Procedure

6 models (2 for monoexponential decay with zero asymptote, 3 for monoexponential decay with variable asymptote, and 1 for biexponential decay) for determining right ventricular relaxation rate were assessed in conscious and anesthetized horses. The 2 methods yielding the most repeatable results then were used to determine right ventricular relaxation rates in horses anesthetized with isoflurane or halothane before, during, and after IV administration of calcium gluconate. Right ventricular pressure was measured, using a catheter-tip high-fidelity pressure transducer, and results were digitized at 500 Hz from minimum rate of change in ventricular pressure.

Results

2 models that used monoexponential decay with zero asymptote repeatedly produced an estimate for relaxation rate and were used to analyze effects of anesthesia and calcium gluconate administration on relaxation rate. Isoflurane and halothane each prolonged right ventricular relaxation rate, with greater prolongation evident in halothane-anesthetized horses. Calcium gluconate attenuated the anesthesia-induced prolongation in right ventricular relaxation rate, with greater response obtained in isoflurane-anesthetized horses.

Conclusions and Clinical Relevance

Right ventricular relaxation rate in horses is assessed best by use of a monoexponential decay model with zero asymptote and nonlinear regression. Intravenous administration of calcium gluconate to isoflurane-anesthetized horses best preserves myocardial relaxant function. (Am J Vet Res 1999;60:872–879)

Free access
in American Journal of Veterinary Research

Abstract

Objectives

To evaluate the effects of halothane and isoflurane on cardiovascular function and serum total and ionized calcium concentrations in horses, and to determine whether administration of calcium gluconate would attenuate these effects.

Animals

6 clinically normal adult Thoroughbreds.

Procedure

Catheters were inserted for measurement of arterial blood pressures, pulmonary arterial blood pressures, right ventricular pressure (for determination of myocardial contractility), right atrial pressure, and cardiac output and for collection of arterial blood samples. Anesthesia was then induced with xylazine hydrochloride and ketamine hydrochloride and maintained with halothane or isoflurane. An IV infusion of calcium gluconate was begun 75 minutes after anesthetic induction; dosage of calcium gluconate was 0.1 mg/kg of body weight/min for the first 15 minutes, 0.2 mg/kg/min for the next 15 minutes, and 0.4 mg/kg/min for an additional 15 minutes. Data were collected before, during, and after administration of calcium gluconate.

Results

Halothane and isoflurane decreased myocardial contractility, cardiac index, and mean arterial pressure, but halothane caused greater depression than isoflurane. Calcium gluconate attenuated the anesthetic-induced depression in cardiac index, stroke index, and maximal rate of increase in right ventricular pressure when horses were anesthetized with isoflurane. When horses were anesthetized with halothane, a higher dosage of calcium gluconate was required to attenuate the depression in stroke index and maximal rate of increase in right ventricular pressure; cardiac index was not changed with calcium administration.

Conclusions and Clinical Relevance

IV administration of calcium gluconate may support myocardial function in horses anesthetized with isoflurane. (Am J Vet Res 1999;60:1430–1435)

Free access
in American Journal of Veterinary Research