Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Thomas W. Riebold x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To determine the serum concentrations and sedative effects of fentanyl after transdermal administration at 3 dosages in llamas.

Animals—9 healthy adult female llamas (mean age, 8 ± 3 years; mean weight, 150 ± 18 kg).

Procedure—Llamas were allocated to 1 of 3 groups (3 llamas/group). Fentanyl patches (each providing transdermal delivery of 75 µg of fentanyl/h) were placed on shaved areas of the antebrachium of all llamas. In group 1, llamas were treated with 1 patch (anticipated fentanyl dosage, 75 µg/h). In group 2, llamas were treated with 2 patches (anticipated fentanyl dosage, 150 µg/h). In group 3, llamas were treated with 4 patches (anticipated fentanyl dosage, 300 µg/h). For each llama, the degree of sedation was assessed by use of a subjective scoring system and a blood sample was collected for determination of serum fentanyl concentration at 12, 24, 36, 48, 60, and 72 hours after patch placement.

Results—Following the placement of 4 patches, mean ± SD serum fentanyl concentration in group 3 llamas reached 0.3 ± 0.08 ng/mL within 12 hours. This concentration was sustained for 72 hours. In group 2, application of 2 patches provided inconsistent results; in group 1, application of 1 patch rarely provided measurable serum fentanyl concentrations. No llamas became sedated at any time.

Conclusions and Clinical Relevance—Results suggest that application of four 75 µg/h fentanyl patches provides consistent, sustained serum fentanyl concentrations without sedation in llamas. However, the serum concentration of fentanyl that provides analgesia in llamas is not known. (Am J Vet Res 2005;66:907–909)

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To compare effects of tiletamine-zolazepam, alfaxalone, ketamine-diazepam, and propofol for anesthetic induction on cardiorespiratory and acid-base variables before and during isoflurane-maintained anesthesia in healthy dogs.

ANIMALS 6 dogs.

PROCEDURES Dogs were anesthetized with sevoflurane and instrumented. After dogs recovered from anesthesia, baseline values for cardiorespiratory variables and cardiac output were determined, and arterial and mixed-venous blood samples were obtained. Tiletamine-zolazepam (5 mg/kg), alfaxalone (4 mg/kg), propofol (6 mg/kg), or ketamine-diazepam (7 and 0.3 mg/kg) was administered IV in 25% increments to enable intubation. After induction (M0) and at 10, 20, 40, and 60 minutes of a light anesthetic plane maintained with isoflurane, measurements and sample collections were repeated. Cardiorespiratory and acid-base variables were compared with a repeated-measures ANOVA and post hoc t test and between time points with a pairwise Tukey test.

RESULTS Mean ± SD intubation doses were 3.8 ± 0.8 mg/kg for tiletamine-zolazepam, 2.8 ± 0.3 mg/kg for alfaxalone, 6.1 ± 0.9 mg/kg and 0.26 ± 0.04 mg/kg for ketamine-diazepam, and 5.4 ± 1.1 mg/kg for propofol. Anesthetic depth was similar among regimens. At M0, heart rate increased by 94.9%, 74.7%, and 54.3% for tiletamine-zolazepam, ketamine-diazepam, and alfaxalone, respectively. Tiletamine-zolazepam caused higher oxygen delivery than propofol. Postinduction apnea occurred in 3 dogs when receiving alfaxalone. Acid-base variables remained within reference limits.

CONCLUSIONS AND CLINICAL RELEVANCE In healthy dogs in which a light plane of anesthesia was maintained with isoflurane, cardiovascular and metabolic effects after induction with tiletamine-zolazepam were comparable to those after induction with alfaxalone and ketamine-diazepam.

Full access
in American Journal of Veterinary Research