Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Terry W. Lehenbauer x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To compare effects of orally administered tepoxalin, carprofen, and meloxicam for controlling aqueocentesis-induced anterior uveitis in dogs, as determined by measurement of aqueous prostaglandin E2 (PGE2) concentrations.

Animals—38 mixed-breed dogs.

Procedures—Dogs were allotted to a control group and 3 treatment groups. Dogs in the control group received no medication. Dogs in each of the treatment groups received an NSAID (tepoxalin, 10 mg/kg, PO, q 24 h; carprofen, 2.2 mg/kg, PO, q 12 h; or meloxicam, 0.2 mg/kg, PO, q 24 h) on days 0 and 1. On day 1, dogs were anesthetized and an initial aqueocentesis was performed on both eyes; 1 hour later, a second aqueocentesis was performed. Aqueous samples were frozen at −80°C until assayed for PGE2 concentrations via an enzyme immunoassay kit.

Results—Significant differences between aqueous PGE2 concentrations in the first and second samples from the control group indicated that aqueocentesis induced uveitis. Median change in PGE2 concentrations for the tepoxalin group (10 dogs [16 eyes]) was significantly lower than the median change for the control group (8 dogs [16 eyes]), carprofen group (9 dogs [16 eyes]), or meloxicam group (9 dogs [16 eyes]). Median changes in PGE2 concentrations for dogs treated with meloxicam or carprofen were lower but not significantly different from changes for control dogs.

Conclusions and Clinical Relevance—Tepoxalin was more effective than carprofen or meloxicam for controlling the production of PGE2 in dogs with experimentally induced uveitis. Tepoxalin may be an appropriate choice when treating dogs with anterior uveitis.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the refractive states of eyes in domestic cats and to evaluate correlations between refractive error and age, breed, and axial globe measurements.

Animals—98 healthy ophthalmologically normal domestic cats.

Procedures—The refractive state of 196 eyes (2 eyes/cat) was determined by use of streak retinoscopy. Cats were considered ametropic when the mean refractive state was ≥ ± 0.5 diopter (D). Amplitude-mode ultrasonography was used to determine axial globe length, anterior chamber length, and vitreous chamber depth.

Results—Mean ± SD refractive state of all eyes was −0.78 ± 1.37 D. Mean refractive error of cats changed significantly as a function of age. Mean refractive state of kittens (≤ 4 months old) was −2.45 ± 1.57 D, and mean refractive state of adult cats (> 1 year old) was −0.39 ± 0.85 D. Mean axial globe length, anterior chamber length, and vitreous chamber depth were 19.75 ± 1.59 mm, 4.66 ± 0.86 mm, and 7.92 ± 0.86 mm, respectively.

Conclusions and Clinical Relevance—Correlations were detected between age and breed and between age and refractive states of feline eyes. Mean refractive error changed significantly as a function of age, and kittens had greater negative refractive error than did adult cats. Domestic shorthair cats were significantly more likely to be myopic than were domestic mediumhair or domestic longhair cats. Domestic cats should be included in the animals in which myopia can be detected at a young age, with a likelihood of progression to emmetropia as cats mature.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To quantitatively determine echogenicity of the liver and renal cortex in clinically normal cats.

Animals—17 clinically normal adult cats.

Procedure—3 ultrasonographic images of the liver and the right kidney were digitized from video output from each cat. Without changing the ultrasound machine settings, an image of a tissue-equivalent phantom was digitized. Biopsy specimens of the right renal cortex and liver were obtained for histologic examination. Mean pixel intensities within the region of interest (ROI) on hepatic, renal cortical, and tissue-equivalent phantom ultrasonographic images were determined by histogram analysis. From ultrasonographic images, mean pixel intensities for hepatic and renal cortical ROI were standardized by dividing each mean value by the mean pixel intensity from the tissue-equivalent phantom.

Results—The mean (± SD) standardized hepatic echogenicity value was 1.06 ± 0.02 (95% confidence interval, 1.02 to 1.10). The mean standardized right renal cortical echogenicity value was 1.04 ± 0.02 (95% confidence interval, 1.01 to 1.08). The mean combined standardized hepatic and renal cortical echogenicity value was 1.02 ± 0.05 (95% confidence interval, 0.99 to 1.04).

Conclusions and Clinical Relevance—Quantitative determination of hepatic and renal cortical echogenicity in cats is feasible, using histogram analysis, and may be useful for early detection of diffuse parenchymal disease and for serially evaluating disease progression. (Am J Vet Res 2000;61:1016–1020)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the refractive error induced by intraocular administration of silicone oil (SiO) in dogs.

Animals—47 client-owned dogs evaluated for blindness secondary to retinal detachment.

Procedures—3-port pars plana vitrectomy with perfluoro-octane and SiO exchange (1,000- or 5,000-centistoke SiO) was performed in 1 or both eyes for all dogs (n = 63 eyes), depending on which eye or eyes were affected. Dogs were normotensive, had complete oil filling of the eyes, and were examined in a standing position for retinoscopic examination of both eyes (including healthy eyes).

Results—The mean refractive error for SiO-filled phakic and pseudophakic eyes was 2.67 and 3.24 D, respectively. The mean refractive error for SiO-filled aphakic eyes was 6.50 D. Dogs in which 5,000-centistoke SiO was used had consistently greater positive refractive errors (mean, 3.45 D), compared with dogs in which 1,000-centistoke SiO was used (mean, 2.10 D); however, the difference was nonsignificant. There was no significant linear relationship between refractive error and the number of days between surgery and retinoscopy.

Conclusions and Clinical Relevance—Hyperopia was observed in all dogs that underwent SiO tamponade, regardless of lens status (phakic, pseudophakic, or aphakic). Aphakic eyes underwent a myopic shift when filled with SiO. Pseudophakic eyes appeared to be more hyperopic than phakic eyes when filled with SiO; however, additional investigation is needed to confirm the study findings.

Full access
in American Journal of Veterinary Research