Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Piet Verleyen x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To investigate the use of ultrasonography to assess nonunion of fractures in dogs and to compare results of ultrasonography, radiography, and histologic examination.

Sample Population—8 nonunion fractures in 6 dogs (1 each in 5 dogs and 3 in 1 dog); dogs ranged from 7 to 94 months of age and weighed 6 to 30 kg.

Procedures—Diagnostic assessment consisted of complete clinical and orthopedic examinations, radiography, B-mode (brightness mode) ultrasonography, and power Doppler ultrasonography. Biopsy samples were obtained during surgery for histologic examination. They were stained with H&E and immunolabeled by use of anti-CD31 antibodies. Correlations of power Doppler score, power Doppler count, vessel area, and radiographic prediction with the mean number of vessels counted per hpf were derived.

Results—Radiographically, 7 of 8 nonunion fractures were diagnosed as atrophic and were therefore estimated to be nonviable. Vascularity of nonunion fractures during power Doppler ultrasonography ranged from nonvascularized to highly vascularized. Absolute vessel count during histologic examination ranged from 0 to 63 vessels/hpf; 5 nonunion sites had a mean count of > 10 vessels/hpf. Vascularity during power Doppler ultrasonography was highly correlated with the number of vessels per hpf, whereas the correlation between the radiographic assessment and histologic evaluation was low.

Conclusions and Clinical Relevance—Radiographic prediction of the viability of nonunion fractures underestimated the histologically assessed vascularity of the tissue. Power Doppler ultrasonography provided a more accurate estimation of the viability of the tissue and therefore the necessity for debridement and autografts during revision surgery.

Full access
in American Journal of Veterinary Research