Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Patrick R. Clarke x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective

To determine the ability of Brucella abortus strain RB51 to induce placentitis and abortion in bison after SC vaccination.

Animals

10 pregnant bison cows, 3 to 10 years old and at 3 to 8 months' gestation.

Procedure

Pregnant bison cows on a Montana ranch were vaccinated SC with 109 colony-forming units of B abortus strain RB51. Two cows, identified prior to the study, were euthanatized and examined 5 weeks after vaccination to obtain optimal histologic samples of placenta. Other cows were euthanatized and examined after abortion. After euthanasia, tissue specimens were collected for histologic and immunohistochemical evaluation. Tissue and fluid specimens for bacteriologic culture were also collected during necropsy.

Results

Of 8 cows, 2 aborted at 68 and 107 days after vaccination. Aborting cows had endometritis. Strain RB51 was isolated from reproductive tissues and supramammary lymph nodes. Fetal lesions were not seen; however, fetal bronchial lymph nodes and amniotic fluid contained strain RB51. Cows examined 5 weeks after vaccination had placentitis and endometritis, with numerous bacteria within trophoblastic epithelial cells that were immunoreactive for strain RB51 antigen. Strain RB51 was isolated from placentomes and numerous lymph nodes. Fetal lesions were not seen 5 weeks after vaccination; however, strain RB51 was isolated from numerous lymph nodes and lung, allantoic fluid, and rectal swab specimens.

Conclusions

The vaccine candidate B abortus RB51 has tropism for the bison placenta, and can cause placentitis, which induces abortion in pregnant bison. The vaccine dose used was similar to that being tested in cattle, but may not be appropriate for pregnant bison. (Am J Vet Res 1996;57:1604–1607)

Free access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

American bison (Bison bison) quarantine protocols were established to prevent transmission of brucellosis outside the Greater Yellowstone Area, while allowing for distribution of wild bison for conservation and cultural purposes. Quarantine standards require rigorous testing over 900 days which has led to the release of over 200 bison to Native American tribes. Standards were evaluated using 15 years of laboratory and management data to minimize the burden of testing and increase the number of brucellosis-free bison available for distribution.

ANIMALS

All bison (n = 578) from Yellowstone National Park were corralled by the National Park Service and United States Department of Agriculture.

PROCEDURES

A statistical and management evaluation of the bison quarantine program was performed. Bayesian latent-class modeling was used to predict the probability of nondetection of a seroreactor at various time points, as well as the probability of seroconversion by days in quarantine.

RESULTS

At 300 days, 1 in 1,000 infected bison (0.0014 probability) would not be detected but could potentially seroconvert; the seroconversion model predicted 99.9% would seroconvert by day 294, and 12.8% of bison enrolled in quarantine would seroconvert over time. Using a 300-day quarantine period, it would take 30 years to potentially miss 1 seroreactor out of over 8,000 bison enrolled in the quarantine program.

CLINICAL RELEVANCE

Reducing the quarantine program requirements from over 900 days to 300 days would allow management of quarantined bison in coordination with seasonal movement of bison herds and triple the number of brucellosis-free bison available for distribution.

Open access
in Journal of the American Veterinary Medical Association