Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Patrick De Backer x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To determine the clinical effects and pharmacokinetics of amiodarone after single doses of 5 mg/kg administered orally or intravenously.

Animals—6 healthy adult horses.

Procedure—In a cross over study, clinical signs and electrocardiographic variables were monitored and plasma and urine samples were collected. A liquid chromatography–mass spectrometry method was used to determine the percentage of protein binding and to measure plasma and urine concentrations of amiodarone and the active metabolite desethylamiodarone.

Results—No adverse clinical signs were observed. After IV administration, median terminal elimination half-lives of amiodarone and desethylamiodarone were 51.1 and 75.3 hours, respectively. Clearance was 0.35 L/kg•h, and the apparent volume of distribution for amiodarone was 31.1 L/kg. The peak plasma desethylamiodarone concentration of 0.08 μg/mL was attained 2.7 hours after IV administration. Neither parent drug nor metabolite was detected in urine, and protein binding of amiodarone was 96%. After oral administration of amiodarone, absorption of amiodarone was slow and variable; bioavailability ranged from 6.0% to 33.7%. The peak plasma amiodarone concentration of 0.14 μg/mL was attained 7.0 hours after oral administration and the peak plasma desethylamiodarone concentration of 0.03 μg/mL was attained 8.0 hours after administration. Median elimination half-lives of amiodarone and desethylamiodarone were 24.1 and 58.6 hours, respectively.

Conclusion and Clinical Relevance—Results indicate that the pharmacokinetic distribution of amiodarone is multicompartmental. This information is useful for determining treatment regimens for horses with arrythmias. Amiodarone has low bioavailability after oral administration, does not undergo renal excretion, and is highly protein-bound in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacodynamic cutoffs with pharmacokinetic-pharmacodynamic principles and Monte Carlo simulation (MCS) for use of amoxicillin in pigs to set interpretive criteria for antimicrobial susceptibility testing.

Sample—191 plasma disposition curves of amoxicillin obtained from 21 IV, 104 IM, and 66 PO administrations corresponding to 2,098 plasma concentrations.

Procedures—A population model of amoxicillin disposition in pigs was developed for PO and IM administration. The MCS method was then used to determine, for various dosage regimens, the proportion of pigs achieving plasma amoxicillin concentrations greater than a selection of possible minimal inhibitory concentrations (MICs) ranging from 0.0625 to 4 mg/L for at least 40% of a 24-hour period.

Results—A target attainment rate (TAR) of 90% was never achieved with the breakpoint recommended by the Clinical and Laboratory Standards Institute (0.5 mg/L) when the usual recommended dosage (20 mg/kg/d) was used. Only by dividing the orally administered daily dose into 12-hour administration intervals was a TAR > 90% achieved when the total dose was at least 40 mg/kg for a pathogen having an MIC ≤ 0.0625 mg/L. For the IM route, the TAR of 90% could only be achieved for MICs of 0.0625 and 0.125 mg/L with the use of 15 and 30 mg/kg doses, respectively.

Conclusions and Clinical Relevance—Population kinetics and MCS are required to determine robust species-specific interpretive criteria (susceptible, intermediate, and resistant classifications) for antimicrobial susceptibility testing breakpoints (taking into account interanimal variability).

Full access
in American Journal of Veterinary Research