Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: P. Rene van Weeren x
  • Musculoskeletal System x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To determine the mechanism that enables horses to partially counteract the shift of the center of pressure under the hoof induced by changes in hoof morphology attributable to growth and wear during a shoeing interval.

Animals—18 clinically sound Warmblood horses.

Procedures—Horses were evaluated 2 days and 8 weeks after shoeing during trotting on a track containing pressure-force measuring plates and by use of a synchronous infrared gait analysis system set at a frequency of 240 Hz. All feet were trimmed toward straight alignment of the proximal, middle, and distal phalanges and shod with standard flat shoes.

Results—Temporal characteristics such as stance time and the time between heel lift and toe off (ie, breakover duration) did not change significantly as a result of shoeing interval. Protraction and retraction angles of the limbs did not change. Compensation was achieved through an increase in the dorsal angle of the metacarpohalangeal or metarsophalangeal (fetlock) joint and a concomitant decrease of the dorsal angle of the hoof wall and fetlock. There was an additional compensatory mechanism in the hind limbs during the landing phase.

Conclusions and Clinical Relevance—Horses compensate for changes in hoof morphology that develop during an 8-week shoeing interval such that they are able to maintain their neuromuscular pattern of movement. The compensation consists of slight alterations in the angles between the distal segments of the limb. Insight into natural compensation mechanisms for hoof imbalance will aid in the understanding and treatment of pathologic conditions in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To describe spontaneous locomotion activity of foals kept under various management conditions and assess the suitability of global positioning system (GPS) technology for recording foal activity.

Animals—59 foals.

Procedures—During the foals' first 4 months of life, 921 observation periods (15 minutes each) were collected and analyzed for locomotion activities. The GPS system was evaluated by simultaneously carrying out field observations with a handheld computer.

Results—Foals spent 0.5% of total observed time cantering, 0.2% trotting, 10.7% walking, 32.0% grazing, 34.8% standing, and 21.6% lying down. Total observed daytime workload (velocity × distance) in the first month was approximately twice that in the following months. Locomotion activity decreased with increasing age. Colts had more activity than fillies in certain periods, and foals that were stabled for some portion of the day had compensatory locomotion activity, which was probably insufficient to reach the level of foals kept continually outside. The GPS recordings and handheld-computer observations were strongly correlated for canter, trot, and walk and moderately correlated for standing and lying. Correlation for grazing was low.

Conclusions and Clinical Relevance—Results indicated that domestically managed foals, when kept 24 h/d at pasture, will exercise at a level comparable with feral foals. High workload during the first month of life might be important for conditioning the musculoskeletal system. The GPS technique accurately quantified canter, trot, and walk activities; less accurately indexed resting; and was unsuitable for grazing because of the wide array of velocities used while foraging.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of microcurrent electrical tissue stimulation (METS) on equine tenocytes cultured from the superficial digital flexor tendon (SDFT).

Sample Population—SDFTs were collected from 20 horses at slaughter.

Procedure—Tenocytes were isolated following outgrowth from explants and grown in 48-well plates. Four methods of delivering current to the tenocytes with a METS device were tested. Once the optimal method was selected, current consisting of 0 (negative control), 0.05, 0.1, 0.5, 1.0, or 1.5 mA was applied to cells (8 wells/current intensity) once daily for 8 minutes. Cells were treated for 1, 2, or 3 days. Cell proliferation, DNA content, protein content, and apoptosis rate were determined.

Results—Application of microcurrent of moderate intensity increased cell proliferation and DNA content, with greater increases with multiple versus single application. Application of microcurrent of moderate intensity once or twice increased protein content, but application 3 times decreased protein content. Application of current a single time did not significantly alter apoptosis rate; however, application twice or 3 times resulted in significant increases in apoptosis rate, and there were significant linear (second order) correlations between current intensity and apoptosis rate when current was applied twice or 3 times.

Conclusions and Clinical Relevance—Results of the present study indicate that microcurrent affects the behavior of equine tenocytes in culture, but that effects may be negative or positive depending on current intensity and number of applications. Therefore, results are far from conclusive with respect to the suitability of using METS to promote tendon healing in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the relationship between the output of an electrical treatment device and the effective field strength in the superficial digital flexor tendon of horses.

Sample Population—Cadaver horse forelimbs without visible defects (n = 8) and 1 live pony.

Procedure—Microcurrents were generated by a microcurrent electrical therapy device and applied in proximodistal, dorsopalmar, and mediolateral directions in the entire forelimbs, dissected tendons, and the pony with various output settings. Corresponding field strengths in the tendons were measured.

Results—A linear relationship was detected between current and field strength in all conditions and in all 3 directions. In dissected tendons, significant differences were detected among all 3 directions, with highest field strength in the proximodistal direction and lowest in the dorsopalmar direction. In the entire forelimbs, field strength in the proximodistal direction was significantly lower than in the mediolateral direction. Results in the pony were similar to those in the entire forelimbs.

Conclusions and Clinical Relevance—Electrode placement significantly affected field strength in the target tissue. Many surrounding structures caused considerable reduction of field strength in the target tissue. These factors should be taken into account when establishing protocols for electrical current–based therapeutic devices if these devices are proven clinically effective.

Full access
in American Journal of Veterinary Research