Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Michael Wood x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

OBJECTIVE

To quantify the magnitude and duration of changes in urine chondroitin sulfate concentration (uCS) as a result of oral administration of a chondroitin sulfate–containing supplement in dogs.

ANIMALS

8 healthy privately owned dogs.

PROCEDURES

A urine sample was collected from each dog via cystocentesis on day 1; free-catch midstream urine samples were collected once daily on days 2 through 5. Pretreatment uCS was established from those samples. Each dog then received a chondroitin sulfate–containing supplement (20 to 30 mg/kg, PO, q 12 h) for 8 days (on days 7 through 14). Urine samples were collected on days 8 through 12 and day 15. For each sample, uCS was quantified by liquid chromatography–tandem mass spectrometry. Variable urine concentration was accounted for by dividing the uCS by urine creatinine concentration (uCrea) to determine the uCS:uCrea ratio. Pretreatment uCS:uCrea ratios were compared with treatment uCS:uCrea ratios to calculate the fold change in uCS after supplement administration.

RESULTS

Among the study dogs, oral administration of the chondroitin sulfate–containing supplement resulted in a 1.9-fold increase in the median uCS:uCrea ratio. Data obtained on days 8 through 12 and day 15 indicated that the daily increase in uCS remained consistent and was not additive.

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated that oral administration of supplemental chondroitin sulfate to dogs modestly increased uCS within 24 hours; however, subsequent supplement administration did not have an additive effect. A potential therapeutic benefit of persistently increased uCS in preventing recurrent urinary tract infections in dogs warrants investigation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether Mycoplasma haemofelis (Mhf) and Candidatus Mycoplasma haemominutum (Mhm) can be transmitted by ingestion of Mycoplasma-infected Ctenocephalides felis and by-products (feces, larvae, and eggs).

Animals—10 cats.

Procedure—3 cats were carriers of Mhf, and 1 was a carrier of Mhm. Six cats had negative results of PCR assay for Mhf and Mhm DNA. A chamber containing 100 C felis was bandaged to 2 Mhf carrier cats. Five days later, fleas and by-products were analyzed for Mycoplasma spp DNA. The remaining fleas and a sample of by-products were fed to 2 Mycoplasma-naïve cats. A chamber containing 200 C felis was bandaged to the Mhm carrier cat. Five days later, fleas and by-products were analyzed for Mycoplasma spp DNA. The remaining fleas and a sample of by-products were fed to 2 Mycoplasma-naïve cats. A chamber containing 200 C felis was bandaged to an Mhf carrier cat and Mhm-carrier cat. Three days later, fleas and by-products were analyzed for Mycoplasma spp DNA. The remaining fleas and a random sample of by products were fed to 4 Mycoplasma-naïve cats. All cats were monitored for infection for ≥7 weeks.

Results—Uptake of Mhf and Mhm DNA into fleas and by-products was detected. None of the naïve cats became infected.

Conclusions and Clinical Relevance—Results suggested that ingestion of Mycoplasma-infected C felis or by-products is not an important means of transmission for Mhf or Mhm.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether Ctenocephalides felis can transmit Mycoplasma haemofelis (Mhf) and Candidatus Mycoplasma haemominutum (Mhm) through hematophagous activity between cats.

Animals—11 cats.

Procedure—2 cats were carriers of either Mhf or Mhm. Nine cats had negative results via polymerase chain reaction (PCR) assay for Mhf and Mhm DNA; 3 of those cats were infected from the chronic carriers via IV inoculation of blood. At the time of maximum organism count for each of the Mycoplasma spp, 1 chamber containing 100 C felis was bandaged to the amplifier cats. Five days later, fleas, feces, larvae, or eggs from each chamber were analyzed for Mycoplasma spp DNA. Viable fleas from the chambers were allocated into new chambers (3 Mhm and 6 Mhf) and attached to naïve cats for 5 days. Cats were monitored daily for clinical signs and weekly via CBC and PCR assay for infection with Mhf or Mhm for a minimum of 8 weeks.

Results—Uptake of Mhf and Mhm DNA into fleas, feces, and, potentially, eggs and larvae was detected. Of the naïve cats fed on by Mhf-infected fleas, 1 cat transiently yielded positive PCR assay results for Mhf on 1 sampling date without clinical or hematologic changes consistent with Mhf infection.

Conclusions and Clinical Relevance—Results suggest that hematophagous transfer of Mhm and Mhf into fleas occurred and that C felis is a possible vector for Mhf via hematophagous activity. (Am J Vet Res 2005;66:1008–1012)

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To compare urine concentrations of fibrinogen (uFIB) and interleukin-6 (uIL-6) between dogs with risk factors for enterococcal bacteriuria and healthy dogs.

SAMPLE

Banked urine samples with negative aerobic culture results from 8 dogs with urolithiasis, 9 dogs with anatomic abnormalities of the lower portion of the urinary tract (LUT), 10 dogs with LUT neoplasia, and 21 healthy control dogs.

PROCEDURES

Urine creatinine concentration (uCrea) was determined by an automated biochemical analyzer, and uFIB and uIL-6 were determined by dog-specific ELISAs. The uFIB:uCrea and uIL-6:uCrea ratios were calculated for each sample to normalize intersample differences in urine concentration and were compared among the 4 experimental groups.

RESULTS

Median uFIB:uCrea ratios for dogs with urolithiasis (0.72; interquartile [25th to 75 percentile] range [IQR], 0.46 to 3.48) and LUT neoplasia (6.16; IQR, 3.89 to 12.75), but not for dogs with LUT anatomic abnormalities (0.48; IQR, 0.27 to 0.69), were significantly greater than that for control dogs (0.17; IQR, 0.07 to 0.39). Median uIL-6:uCrea ratios for dogs with urolithiasis (0.48; IQR, 0.18 to 1.61), LUT anatomic abnormalities (0.25; IQR, 0.17 to 0.33), and LUT neoplasia (0.25; IQR, 0.12 to 1.01) were significantly greater than that for control dogs (0.08; IQR, 0.06 to 0.11).

CONCLUSIONS AND CLINICAL RELEVANCE

The uFIB and uIL-6 in dogs with risk factors for enterococcal bacteriuria were generally greater than corresponding values in control dogs. Further investigation is necessary to determine the role of fibrinogen in enterococcal colonization of the urinary tract of dogs.

Full access
in American Journal of Veterinary Research