Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Michael S. McFadden x
  • Refine by Access: Content accessible to me x
Clear All Modify Search


Objective—To evaluate histologic reactions to 8 suture materials and cyanoacrylate tissue adhesive (CTA) in the musculature and skin of ball pythons.

Animals—30 hatchling ball pythons.

Procedures—In each snake, ten 1-cm skin incisions were made (day 0). At 8 sites, a suture of 1 of 8 materials was placed in the epaxial musculature, and the incision was closed with the same material. One incision was closed by use of CTA. No suture material was placed in the tenth incision, which was allowed to heal by second intention (negative control). Snakes (n = 5/group) were euthanized for harvest of treatment-site tissues at days 3, 7, 14, 30, 60, and 90. Skin and muscle sections were examined microscopically and assigned a subjective score (0 to 4) for each of the following: overall severity of inflammation, fibrosis, number of macrophages, number of granulocytes, number of perivascular lymphocytes, and degree of suture fragmentation.

Results—Subjective score analysis revealed that CTA did not cause a significant inflammatory response, compared with the negative control. All suture materials caused significantly more inflammation over all time points; for all suture materials, inflammatory response scores were significantly higher than values for the negative control 90 days after implantation. No sutures were completely absorbed by the end of the study period, and several sutures appeared to be in the process of extrusion.

Conclusions and Clinical Relevance—In snakes, CTA can be used to close small superficial incisions or lacerations with minimal inflammatory response, and sutures may undergo extrusion from tissues prior to complete absorption.

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association


Objective—To assess the clinical differences between induction of anesthesia in ball pythons with intracardiac administration of propofol and induction with isoflurane in oxygen and to assess the histologic findings over time in hearts following intracardiac administration of propofol.

Design—Prospective randomized study.

Animals—30 hatchling ball pythons (Python regius).

Procedures—Anesthesia was induced with intracardiac administration of propofol (10 mg/kg [4.5 mg/lb]) in 18 ball pythons and with 5% isoflurane in oxygen in 12 ball pythons. Induction time, time of anesthesia, and recovery time were recorded. Hearts from snakes receiving intracardiac administration of propofol were evaluated histologically 3, 7, 14, 30, and 60 days following propofol administration.

Results—Induction time with intracardiac administration of propofol was significantly shorter than induction time with 5% isoflurane in oxygen. No significant differences were found in total anesthesia time. Recovery following intracardiac administration of propofol was significantly longer than recovery following induction of anesthesia with isoflurane in oxygen. Heart tissue evaluated histologically at 3, 7, and 14 days following intracardiac administration of propofol had mild inflammatory changes, and no histopathologic lesions were seen 30 and 60 days following propofol administration.

Conclusions and Clinical Relevance—Intracardiac injection of propofol in snakes is safe and provides a rapid induction of anesthesia but leads to prolonged recovery, compared with that following induction with isoflurane. Histopathologic lesions in heart tissues following intracardiac injection of propofol were mild and resolved after 14 days.

Full access
in Journal of the American Veterinary Medical Association