Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Matt Warner x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

OBJECTIVE To determine the lomustine content (potency) in compounded and FDA-approved lomustine capsules.

DESIGN Evaluation study.

SAMPLE 2 formulations of lomustine capsules (low dose [7 to 11 mg] and high dose [40 to 48 mg]; 5 capsules/dose/source) from 3 compounders and from 1 manufacturer of FDA-approved capsules.

PROCEDURES Lomustine content was measured by use of a validated high-pressure liquid chromatography method. An a priori acceptable range of 90% to 110% of the stated lomustine content was selected on the basis of US Pharmacopeia guidelines.

RESULTS The measured amount of lomustine in all compounded capsules was less than the stated content (range, 59% to 95%) and was frequently outside the acceptable range (failure rate, 2/5 to 5/5). Coefficients of variation for lomustine content ranged from 4.1% to 16.7% for compounded low-dose capsules and from 1.1% to 10.8% for compounded high-dose capsules. The measured amount of lomustine in all FDA-approved capsules was slightly above the stated content (range, 104% to 110%) and consistently within the acceptable range. Coefficients of variation for lomustine content were 0.5% for low-dose and 2.3% for high-dose FDA-approved capsules.

CONCLUSIONS AND CLINICAL RELEVANCE Compounded lomustine frequently did not contain the stated content of active drug and had a wider range of lomustine content variability than did the FDA-approved product. The sample size was small, and larger studies are needed to confirm these findings; however, we recommend that compounded veterinary formulations of lomustine not be used when appropriate doses can be achieved with FDA-approved capsules or combinations of FDA-approved capsules.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To determine drug content (potency) of compounded doxycycline formulations for veterinary use and of US FDA–approved doxycycline formulations for human use < 24 hours after receipt (day 1) and after 21 days of storage under recommended conditions (day 21).

DESIGN Evaluation study.

SAMPLE FDA-approved doxycycline tablets (100 mg), capsules (100 mg), and liquid suspension (10 mg/mL) and compounded doxycycline formulations from 3 pharmacies (tablets [25, 100, and 150 mg; 1 product/source], chews [100 mg; 1 product/source], and liquid suspensions or solution [6 mg/mL {2 sources} and 50 mg/mL {1 source}]).

PROCEDURES Doxycycline content was measured in 5 samples of each tablet, chew, or capsule formulation and 5 replicates/bottle of liquid formulation on days 1 and 21 by liquid chromatography and compared with US Pharmacopeia acceptable ranges.

RESULTS All FDA-approved formulations had acceptable content on days 1 and 21. On day 1, mean doxycycline content for the 3 compounded tablet formulations was 89%, 98%, and 116% (3/5, 5/5, and 1/5 samples within acceptable ranges); day 21 content range was 86% to 112% (1/5, 5/5, and 4/5 samples within acceptable ranges). Day 1 content of chews was 81%, 78%, and 98% (0/5, 0/5, and 5/5 samples within acceptable ranges), and that of compounded liquids was 50%, 52%, and 85% (no results within acceptable ranges). No chews or compounded liquid formulations met USP standards on day 21.

CONCLUSIONS AND CLINICAL RELEVANCE FDA-approved doxycycline should be prescribed when possible. Whole tablets yielded the most consistent doxycycline content for compounded formulations.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To evaluate pharmacokinetics of cefazolin after IV injection of cefazolin (22 mg/kg) and after simultaneous IV and IM injections of cefazolin (total dose, 44 mg/kg) to dogs.

ANIMALS 12 adult Beagles.

PROCEDURES Dogs (6/group) were assigned to receive a single injection of cefazolin (IV group; 22 mg/kg, IV) or simultaneous injections (IV + IM group; 22 mg/kg, IV, and 22 mg/kg, IM). Interstitial fluid was collected over a 5-hour period by use of ultrafiltration probes for pharmacokinetic analysis.

RESULTS Mean cefazolin concentration in the interstitial fluid at 1, 1.5, 2, 3, 4, and 5 hours after injection was 39.6, 29.1, 21.2, 10.3, 6.4, and 2.7 μg/mL, respectively, for the IV group and 38.3, 53.3, 46.4, 31.7, 19.1, and 8.9 μg/mL, respectively, for the IV + IM group. Mean area under the concentration-time curve extrapolated to infinity, maximum concentration, half-life, and time to maximum concentration was 74.99 and 154.16 h·μg/mL, 37.3 and 51.5 μg/mL, 0.96 and 1.11 hours, and 1.28 and 1.65 hours, respectively, for the IV and IV + IM groups.

CONCLUSIONS AND CLINICAL RELEVANCE Cefazolin concentrations in interstitial fluid of dogs were maintained at > 4 μg/mL for 4 hours after a single IV injection and for 5 hours after simultaneous IV and IM injections. Therefore, simultaneous IV and IM administration of cefazolin 30 to 60 minutes before surgery should provide interstitial fluid concentrations effective against the most common commensal organisms (Staphylococcus spp and Streptococcus spp) on the skin of dogs for surgical procedures lasting ≤ 4 hours.

Full access
in American Journal of Veterinary Research