Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Kyle R. Kuskie x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To determine whether the concentrations of airborne virulent Rhodococcus equi in stalls housing foals during the first 2 weeks after birth are associated with subsequent development of R equi pneumonia in those foals.

Sample—Air samples collected from foaling stalls and holding pens in which foals were housed during the first 2 weeks after birth.

Procedures—At a breeding farm in Texas, air samples (500 L each) were collected (January through May 2011) from stalls and pens in which 121 foals were housed on day 1 and on days 4, 7, and 14 after birth. For each sample, the concentration of airborne virulent R equi was determined with an immunoblot technique. The association between development of pneumonia and airborne R equi concentration was evaluated via random-effects Poisson regression analysis.

Results—Some air samples were not available for analysis. Of the 471 air samples collected from stalls that housed 121 foals, 90 (19%) contained virulent R equi. Twenty-four of 121 (20%) foals developed R equi pneumonia. Concentrations of virulent R equi in air samples from stalls housing foals that developed R equi pneumonia were significantly higher than those in samples from stalls housing foals that did not develop pneumonia. Accounting for disease effects, air sample concentrations of virulent R equi did not differ significantly by day after birth or by month of birth.

Conclusions and Clinical Relevance—Exposure of foals to airborne virulent R equi during the first 2 weeks after birth was significantly (and likely causally) associated with development of R equi pneumonia.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether airborne concentrations of virulent Rhodococcus equi at 2 horse breeding farms varied on the basis of location, time of day, and month.

Sample Population—2 farms in central Kentucky with recurrent R equi-induced pneumonia in foals.

Procedures—From February through July 2008, air samples were collected hourly for a 24-hour period each month from stalls and paddocks used to house mares and their foals. Concentrations of airborne virulent R equi were determined via a modified colony immunoblot technique. Differences were compared by use of zero-inflated negative binomial methods to determine effects of location, time, and month.

Results—Whether mares and foals were housed predominantly in stalls or paddocks significantly affected results for location of sample collection (stall vs paddock) by increasing airborne concentrations of virulent R equi at the site where horses were predominantly housed. Airborne concentrations of virulent R equi were significantly higher from 6:00 pm through 11:59 pm than for the period from midnight through 5:59 am. Airborne concentrations of virulent R equi did not differ significantly between farms or among months.

Conclusions and Clinical Relevance—Airborne concentrations of virulent R equi were significantly increased when horses were predominantly housed at the site for collection of air samples (ie, higher in stalls when horses were predominantly housed in stalls and higher in paddocks when horses were predominantly housed in paddocks). Concentrations of virulent R equi among air samples collected between the hours of 6:00 am and midnight appeared similar.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether soil concentrations of total or virulent Rhodococcus equi differed among breeding farms with and without foals with pneumonia caused by R equi.

Sample Population—37 farms in central Kentucky.

Procedures—During January, March, and July 2006, the total concentration of R equi and concentration of virulent R equi were determined by use of quantitative bacteriologic culture and a colony immunoblot technique, respectively, in soil specimens obtained from farms. Differences in concentrations and proportion of virulent isolates within and among time points were compared among farms.

Results—Soil concentrations of total or virulent R equi did not vary among farms at any time point. Virulent R equi were identified in soil samples from all farms. Greater density of mares and foals was significantly associated with farms having foals with pneumonia attributable to R equi. Among farms with affected foals, there was a significant association of increased incidence of pneumonia attributable to R equi with an increase in the proportion of virulent bacteria between samples collected in March and July.

Conclusions and Clinical Relevance—Results indicated that virulent R equi were commonly recovered from soil of horse breeding farms in central Kentucky, regardless of the status of foals with pneumonia attributable to R equi on each farm. The incidence of foals with pneumonia attributable to R equi can be expected to be higher at farms with a greater density of mares and foals.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether the concentration of airborne virulent Rhodococcus equi varied by location (stall vs paddock) and month on horse farms.

Sample—Air samples from stalls and paddocks used to house mares and foals on 30 horse breeding farms in central Kentucky.

Procedures—Air samples from 1 stall and 1 paddock were obtained monthly from each farm from January through June 2009. Concentrations of airborne virulent R equi were determined via a modified colony immunoblot assay. Random-effects logistic regression was used to determine the association of the presence of airborne virulent R equi with location from which air samples were obtained and month during which samples were collected.

Results—Of 180 air samples, virulent R equi was identified in 49 (27%) and 13 (7%) obtained from stalls and paddocks, respectively. The OR of detecting virulent R equi in air samples from stalls versus paddocks was 5.2 (95% confidence interval, 2.1 to 13.1). Of 60 air samples, virulent R equi was identified in 25 (42%), 18 (30%), and 6 (10%) obtained from stalls during January and February, March and April, and May and June, respectively. The OR of detecting virulent R equi from stall air samples collected during May and June versus January and February was 0.22 (95% confidence interval, 0.08 to 0.63).

Conclusions and Clinical Relevance—Foals were more likely to be exposed to airborne virulent R equi when housed in stalls versus paddocks and earlier (January and February) versus later (May and June) during the foaling season.

Full access
in American Journal of Veterinary Research