Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Joseph Szabo x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To examine effects of dietary protein quality (casein [CA] vs corn gluten [CG]) and dietary lipids (corn oil [CO] vs oil blend [OB] rich in long-chain polyunsaturated fatty acids [LCPUFAs]) on fatty acid composition in liver and adipose tissue after weight loss in overweight cats.

Animals—24 ovariohysterectomized adult cats.

Procedure—Cats were allowed ad libitum access to a high-quality diet until they weighed 30% more than their ideal body weight. Cats were then randomly assigned to 1 of 4 weight-reduction diets (6 cats/diet) and were fed 25% of maintenance energy requirements per day. Diets consisted of CG–CO, CA–CO, CG–OB, and CA–OB, respectively, and were fed until cats lost weight and returned to their original lean body mass. Liver biopsy specimens and samples of perirenal, subcutaneous, and abdominal fat were obtained and analyzed for fatty acid content.

Results—Following weight loss, fatty acid composition of the liver and adipose tissue was primarily affected by protein quality in that cats fed CA had significantly higher percentages of 20:4(n-6) and 22:6(n-3) fatty acids than those fed CG. Cats fed the CG–CO diet had the lowest concentrations of LCPUFAs, suggesting that dietary lipids and protein quality each influence fatty acid composition in tissues.

Conclusions and Clinical Relevance—These data provide direct evidence that dietary protein quality alters fatty acid composition of tissues during weight loss in cats. The fatty acid patterns observed suggest that protein quality may alter fatty acid composition through modulation of desaturase activity. (Am J Vet Res 2003;64:310–315)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of dietary lipid and protein on plasma lipoprotein and free fatty acid concentrations and hepatic fatty acid synthesis during weight gain and rapid weight loss in cats.

Animals—24 ovariohysterectomized cats.

Procedure—Cats were fed a high energy diet until they gained 30% of their ideal body weight and then randomly assigned to receive 1 of 4 weight reduction diets (6 cats/diet) at 25% of maintenance energy requirements. Diets contained a low or high quality protein source and a lipid source deficient or sufficient in long chain essential fatty acids. Plasma samples and liver biopsy specimens were obtained before and after weight gain and during and after weight loss for determination of free fatty acid, triglyceride, and lipoprotein concentrations. Synthesis of these substances was measured by use of isotope enrichment.

Results—Plasma total cholesterol concentration and concentration of lipoprotein fractions increased after weight gain, compared with baseline values. Weight loss resulted in a significant decrease in concentrations of all lipoprotein fractions except high density lipoprotein. High density lipoprotein concentration was significantly greater in cats fed diets containing an oil blend, compared with cats fed diets containing corn oil. Fatty acid synthesis after weight loss was below the detection limit of the measurement technique.

Conclusions and Clinical Relevance—In cats undergoing rapid weight loss there is neither increased triglyceride synthesis nor decreased transport of very low density lipoproteins from the liver, suggesting that their involvement in the development of hepatic lipidosis may be minimal. (Am J Vet Res 2000;61:566–572)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of dietary lipid and protein on development of hepatic lipidosis (HL) and on physical and biochemical indices following rapid weight loss in cats.

Animals—24 ovariohysterectomized cats.

Procedure—Cats were fed a high energy diet until they gained 30% of their ideal body weight and then randomly assigned to receive 1 of 4 weight-reduction diets (6 cats/diet) at 25% of maintenance energy requirements per day. Diets contained a low or high quality protein source and a lipid source deficient or sufficient in long chain essential fatty acids (LCEFA). Serum and plasma samples and liver biopsy specimens were obtained for biochemical analyses and determination of hepatic lipid content before and after weight gain and during and after weight loss.

Results—Irrespective of weight-reduction diet fed, all cats lost weight at a comparable rate (4.51 to 5.00 g/d/kg of obese body weight). Three cats developed hepatic lipidosis. Significant changes in plasma insulin, cholesterol, triglyceride, and serum glucose concentrations were detected after weight gain and weight loss in all diet groups, but values for these variables did not differ among groups.

Conclusions and Clinical Relevance—Cats can lose 25 to 30% of their obese body weight over 7 to 9 weeks without developing overt clinical signs of HL, provided that weight-reduction diets are highly palatable, contain a high quality protein, have a source of LCEFA, and are fortified with vitamins and microminerals. However, rapid weight loss may increase risk factors associated with development of diabetes mellitus. (Am J Vet Res 2000;61:559–565)

Full access
in American Journal of Veterinary Research