Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: John F. Hess x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To identify the Moraxella bovis cytotoxin gene.

Procedure—Hemolytic and nonhemolytic strains of M bovis were compared by use of western blotting to identify proteins unique to hemolytic strains. Oligonucleotide primers, designed on the basis of amino acid sequences of 2 tryptic peptides derived from 1 such protein and conserved regions of the C and B genes from members of the repeats in the structural toxin (RTX) family of bacterial toxins, were used to amplify cytotoxin-specific genes from M bovis genomic DNA. Recombinant proteins were expressed, and antisera against these proteins were produced in rabbits.

Results—Several proteins ranging in molecular mass from 55 to 75 kd were unique to the hemolytic strain. An open reading frame encoding a 927-amino acid protein with a predicted molecular mass of 98.8 kd was amplified from M bovis genomic DNA. The deduced amino acid sequence encoded by this open reading frame was homologous to RTX toxins. Antisera against the recombinant carboxy terminus encoded by this open reading frame neutralized hemolytic and cytolytic activities of native M bovis cytotoxin.

Conclusions and Clinical Relevance—A gene was identified in M bovis that encodes a protein with sequence homology to other RTX toxins. Results of cytotoxin neutralization assays support the hypothesis that M bovis cytotoxin is encoded by this gene and belongs in the RTX family of bacterial exoproteins. Identification of this gene and expression of recombinant cytotoxin could facilitate the development of improved vaccines against infectious bovine keratoconjunctivitis. (Am J Vet Res 2001;62:1222–1228)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate efficacy of a recombinant Moraxella bovis pilin-cytotoxin-Moraxella bovoculi cytotoxin subunit vaccine to prevent naturally occurring infectious bovine keratoconjunctivitis (IBK).

Animals—107 beef steers.

Procedures—2 groups of calves were inoculated SC with an immunostimulating complex (ISCOM) matrix adjuvant (control group; n = 54) or a recombinant M bovis pilin-cytotoxin–M bovoculi cytotoxin subunit antigen with the ISCOM matrix adjuvant (vaccine group; 53); calves received booster injections 21 days later. Calves were examined once weekly for 16 weeks. Investigators and herd managers were not aware of the inoculum administered to each calf throughout the trial. Primary outcome of interest was the cumulative proportion of calves that developed IBK. Serum samples were obtained before inoculation (day 0) and on days 42 and 112. Serum hemolysin-neutralizing titers against native M bovis and M bovoculi cytotoxin were determined.

Results—No difference was detected between groups for the cumulative proportion of calves that developed IBK at weeks 8 and 16 after inoculation. Non–IBK-affected calves in the vaccine group had a significantly higher fold change in serum hemolysin-neutralizing titer against native M bovoculi cytotoxin from day 0 to 42 compared to control calves.

Conclusions and Clinical Relevance—The M bovis pilin-cytotoxin-M bovoculi cytotoxin subunit vaccine with the ISCOM matrix adjuvant was not effective at preventing naturally occurring IBK. It is likely that the incorporation of additional protective antigens in a recombinant Moraxella spp subunit vaccine will be required to yield a product that can be used for effective immunization of cattle against IBK.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate changes in systemic and ocular antibody responses of steers following intranasal vaccination with precipitated or partially solubilized recombinant Moraxella bovis cytotoxin (MbxA).

ANIMALS 13 Angus steers with ages ranging from 318 to 389 days and weights ranging from 352 to 437 kg.

PROCEDURES Steers were assigned to receive 500 μg of a precipitated (MbxA-P; n = 5) or partially solubilized (MbxA-S; 5) recombinant MbxA subunit adjuvanted with polyacrylic acid. A control group (n = 3) received the adjuvant alone. Each steer received the assigned treatment (1 mL/nostril) on days 0 and 28. Serum and tear samples were collected on days 0 (before vaccination), 14, 28, 42, and 55. Changes in MbxA-neutralizing antibody titers and MbxA-specific IgG concentrations in serum and tears and changes in MbxA-specific IgA concentrations in tears were measured.

RESULTS Mean fold changes in MbxA-specific IgG concentration in serum and tears and MbxA-neutralizing antibody titer in tears for the MbxA-P group were significantly greater than those for the MbxA-S and control groups. Mean serum MbxA-neutralizing antibody titer did not differ among the 3 groups. Although the mean fold change in tear MbxA-specific IgA concentration differed significantly among the groups in the overall analysis, post hoc comparisons failed to identify any significant pairwise differences.

CONCLUSIONS AND CLINICAL RELEVANCE Systemic and ocular immune responses induced by intranasal administration of the MbxA-P vaccine were superior to those induced by the MbxA-S vaccine. Additional research is necessary to determine whether the MbxA-P vaccine can prevent naturally occurring infectious bovine keratoconjunctivitis.

Full access
in American Journal of Veterinary Research