Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Jennifer L. Davis x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To determine the effect of protein binding on the pharmacokinetics and distribution from plasma to interstitial fluid (ISF) of cephalexin and cefpodoxime proxetil in dogs.

Animals—6 healthy dogs.

Procedures—In a crossover study design, 25 mg of cephalexin/kg or 9.6 mg of cefpodoxime/kg was administered orally. Blood samples were collected before (time 0) and 0.33, 0.66, 1, 2, 3, 4, 6, 8, 10, 12, 16, and 24 hours after treatment. An ultrafiltration device was used in vivo to collect ISF at 0, 2, 4, 6, 8, 10, 12, 16, and 24 hours. Plasma and ISF concentrations were analyzed with high-pressure liquid chromatography. Plasma protein binding was measured by use of a microcentrifugation technique.

Results—Mean plasma protein binding for cefpodoxime and cephalexin was 82.6% and 20.8%, respectively. Mean ± SD values for cephalexin in plasma were determined for peak plasma concentration (Cmax, 31.5 ± 11.5 μg/mL), area under the time-concentration curve (AUC, 155.6 ± 29.5 μg•h/mL), and terminal half-life (T½, 4.7 ± 1.2 hours); corresponding values in ISF were 16.3 ± 5.8 μg/mL, 878 ± 21.0 μg•h/mL, and 3.2 ± 0.6 hours, respectively. Mean ± SD values for cefpodoxime in plasma were 33.0 ± 6.9 μg/mL (Cmax), 282.8 ± 44.0 μg•h/mL (AUC), and 5.7 ± 0.9 hours (T1/2); corresponding values in ISF were 4.3 ± 2.0 μg/mL, 575 ± 174 μg•h/mL, and 10.4 ± 3.3 hours, respectively.

Conclusions and Clinical Relevance—Tissue concentration of protein-unbound cefpodoxime was similar to that of the protein-unbound plasma concentration. Cefpodoxime remained in tissues longer than did cephalexin.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution.

Animals—6 adult horses.

Procedures—Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed.

Results—Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 ± 18.41%. The elimination half-life after a single orally administered dose was 13.11 ± 2.85 hours, and the maximum plasma concentration was 2.43 ± 0.4 μg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study.

Conclusions and Clinical Relevance—Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration ≤ 1 μg/mL. Because of the possible nonlinearity of this drug as well as the potential for accumulation, chronic dosing studies and clinical trials are needed to determine the appropriate dosing regimen for voriconazole in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacokinetics, safety, and penetration into interstitial fluid (ISF), polymorphonuclear leukocytes (PMNLs), and aqueous humor of doxycycline after oral administration of single and multiple doses in horses.

Animals—6 adult horses.

Procedure—The effect of feeding on drug absorption was determined. Plasma samples were obtained after administration of single or multiple doses of doxycycline (20 mg/kg) via nasogastric tube. Additionally, ISF, PMNLs, and aqueous humor samples were obtained after the final administration. Horses were monitored for adverse reactions.

Results—Feeding decreased drug absorption. After multiple doses, mean ± SD time to maximum concentration was 1.63 ± 1.36 hours, maximum concentration was 1.74 ± 0.3 μg/mL, and elimination half-life was 12.07 ± 3.17 hours. Plasma protein binding was 81.76 ± 2.43%. The ISF concentrations correlated with the calculated percentage of non-protein-bound drug. Maximum concentration was 17.27 ± 8.98 times as great in PMNLs, compared with plasma. Drug was detected in aqueous humor at 7.5% to 10% of plasma concentrations. One horse developed signs of acute colitis and required euthanasia.

Conclusions and Clinical Relevance—Results suggest that doxycycline administered at a dosage of 20 mg/kg, PO, every 24 hours will result in drug concentrations adequate for killing intracellular bacteria and bacteria with minimum inhibitory concentration ≤ 0.25 μg/mL. For bacteria with minimum inhibitory concentration of 0.5 to 1.0 μg/mL, a dosage of 20 mg/kg, PO, every 12 hours may be required; extreme caution should be exercised with the higher dosage until more safety data are available.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of itraconazole after IV or oral administration of a solution or capsules to horses and to examine disposition of itraconazole in the interstitial fluid (ISF), aqueous humor, and polymorphonuclear leukocytes after oral administration of the solution.

Animals—6 healthy horses.

Procedure—Horses were administered itraconazole solution (5 mg/kg) by nasogastric tube, and samples of plasma, ISF, aqueous humor, and leukocytes were obtained. Horses were then administered itraconazole capsules (5 mg/kg), and plasma was obtained. Three horses were administered itraconazole (1.5 mg/kg, IV), and plasma samples were obtained. All samples were analyzed by use of high-performance liquid chromatography. Plasma protein binding was determined. Data were analyzed by compartmental and noncompartmental pharmacokinetic methods.

Results—Itraconazole reached higher mean ± SD plasma concentrations after administration of the solution (0.41 ± 0.13 µg/mL) versus the capsules (0.15 ± 0.12 µg/mL). Bioavailability after administration of capsules relative to solution was 33.83 ± 33.08%. Similar to other species, itraconazole has a high volume of distribution (6.3 ± 0.94 L/kg) and a long half-life (11.3 ± 2.84 hours). Itraconazole was not detected in the ISF, aqueous humor, or leukocytes. Plasma protein binding was 98.81 ± 0.17%.

Conclusions and Clinical Relevance—Itraconazole administered orally as a solution had higher, more consistent absorption than orally administered capsules and attained plasma concentrations that are inhibitory against fungi that infect horses. Administration of itraconazole solution (5 mg/kg, PO, q 24 h) is suggested for use in clinical trials to test the efficacy of itraconazole in horses. (Am J Vet Res 2005;66:1694–1701)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the degree of ocular penetration and systemic absorption of commercially available topical ophthalmic solutions of 0.3% ciprofloxacin and 0.5% moxifloxacin following repeated topical ocular administration in ophthalmologically normal horses.

Animals—7 healthy adult horses with clinically normal eyes as evaluated prior to each treatment.

Procedures—6 horses were used for assessment of each antimicrobial, and 1 eye of each horse was treated with topically administered 0.3% ciprofloxacin or 0.5% moxifloxacin (n = 6 eyes/drug) every 4 hours for 7 doses. Anterior chamber paracentesis was performed 1 hour after the final dose was administered, and blood samples were collected at 24 (immediately after the final dose), 24.25, 24.5, and 25 hours (time of aqueous humor [AH] collection). Plasma and AH concentrations of ciprofloxacin or moxifloxacin were determined by use of high-performance liquid chromatography.

Results—Mean ± SD AH concentrations of ciprofloxacin and moxifloxacin were 0.009 ± 0.008 μg/mL and 0.071 ± 0.029 μg/mL, respectively. The AH moxifloxacin concentrations were significantly greater than those of ciprofloxacin. Mean ± SD plasma concentrations of ciprofloxacin were less than the lower limit of quantification. Moxifloxacin was detected in the plasma of all horses at all sample collection times, with a peak value of 0.015 μg/mL at 24 and 24.25 hours, decreasing to < 0.004 μg/mL at 25 hours.

Conclusions and Clinical Relevance—Moxifloxacin was better able to penetrate healthy equine corneas and reach measurable AH concentrations than was ciprofloxacin, suggesting moxifloxacin might be of greater value in the treatment of deep corneal or intraocular bacterial infections caused by susceptible organisms. Topical administration of moxifloxacin also resulted in detectable plasma concentrations.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics and safety of orally administered voriconazole in African grey parrots.

Animals—20 clinically normal Timneh African grey parrots (Psittacus erithacus timneh).

Procedures—In single-dose trials, 12 parrots were each administered 6, 12, and 18 mg of voriconazole/kg orally and plasma concentrations of voriconazole were determined via high-pressure liquid chromatography. In a multiple-dose trial, voriconazole (18 mg/kg) was administered orally to 6 birds every 12 hours for 9 days; a control group (2 birds) received tap water. Treatment effects were assessed via observation, clinicopathologic analyses (3 assessments), and measurement of trough plasma voriconazole concentrations (2 assessments).

Results—Voriconazole's elimination half-life was short (1.1 to 1.6 hours). Higher doses resulted in disproportional increases in the maximum plasma voriconazole concentration and area under the curve. Trough plasma voriconazole concentrations achieved in the multiple-dose trial were lower than those achieved after administration of single doses. Polyuria (the only adverse treatment effect) developed in treated and control birds but was more severe in the treatment group.

Conclusions and Clinical Relevance—In African grey parrots, voriconazole has dose-dependent pharmacokinetics and may induce its own metabolism. Oral administration of 12 to 18 mg of voriconazole/kg twice daily is a rational starting dose for treatment of African grey parrots infected with Aspergillus or other fungal organisms that have a minimal inhibitory concentration for voriconazole ≤ 0.4 μg/mL. Higher doses may be needed to maintain plasma voriconazole concentrations during long-term treatment. Safety and efficacy of various voriconazole treatment regimens in this species require investigation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate effects of lidocaine hydrochloride administered IV on mucosal inflammation in ischemia-injured jejunum of horses treated with flunixin meglumine.

Animals—24 horses.

Procedures—Horses received saline (0.9% NaCl) solution (SS; 1 mL/50 kg, IV [1 dose]), flunixin meglumine (1 mg/kg, IV, q 12 h), lidocaine (bolus [1.3 mg/kg] and constant rate infusion [0.05 mg/kg/min], IV, during and after recovery from surgery), or both flunixin and lidocaine (n = 6/group). During surgery, blood flow was occluded for 2 hours in 2 sections of jejunum in each horse. Uninjured and ischemia-injured jejunal specimens were collected after the ischemic period and after euthanasia 18 hours later for histologic assessment and determination of cyclooxygenase (COX) expression (via western blot procedures). Plasma samples collected prior to (baseline) and 8 hours after the ischemic period were analyzed for prostanoid concentrations.

Results—Immediately after the ischemic period, COX-2 expression in horses treated with lidocaine alone was significantly less than expression in horses treated with SS or flunixin alone. Eighteen hours after the ischemic period, mucosal neutrophil counts in horses treated with flunixin alone were significantly higher than counts in other treatment groups. Compared with baseline plasma concentrations, postischemia prostaglandin E2 metabolite and thromboxane B2 concentrations increased in horses treated with SS and in horses treated with SS or lidocaine alone, respectively.

Conclusions and Clinical Relevance—In horses with ischemia-injured jejunum, lidocaine administered IV reduced plasma prostaglandin E2 metabolite concentration and mucosal COX-2 expression. Coadministration of lidocaine with flunixin ameliorated the flunixin-induced increase in mucosal neutrophil counts.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare isolated limb retrograde venous injection (ILRVI) and isolated limb infusion (ILI) for delivery of amikacin to the synovial fluid of the distal interphalangeal and metacarpophalangeal joints and to evaluate the efficacy of use of an Esmarch tourniquet in standing horses.

Animals—6 healthy adult horses.

Procedures—Horses were randomly assigned in a crossover design. In ILRVI, the injection consisted of 1 g of amikacin diluted to a total volume of 60 mL administered during a 3-minute period. In ILI, the infusion consisted of 1 g of amikacin diluted to 40 mL administered during a 3-minute period followed by administration of boluses of diluent (82 mL total) to maintain vascular pressure. During ILI, the infusate and blood were circulated from the venous to the arterial circulation in 5-mL aliquots. Synovial fluid and serum samples were obtained to determine maximum amikacin concentrations and tourniquet leakage, respectively.

Results—Both techniques yielded synovial concentrations of amikacin > 10 times the minimum inhibitory concentration (MIC) for 90% of isolates (80 μg/mL) and > 10 times the MIC breakpoint (160 μg/mL) of amikacin-susceptible bacteria reported to cause septic arthritis in horses. These values were attained for both joints for both techniques. Esmarch tourniquets prevented detectable loss of amikacin to the systemic circulation for both techniques.

Conclusions and Clinical Relevance—Both techniques reliably achieved synovial fluid concentrations of amikacin consistent with concentration-dependent killing for bacteria commonly encountered in horses with septic arthritis. Esmarch tourniquets were effective for both delivery techniques in standing horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine penetration of topically and orally administered voriconazole into ocular tissues and evaluate concentrations of the drug in blood and signs of toxicosis after topical application in horses.

Animals—11 healthy adult horses.

Procedure—Each eye in 6 horses was treated with a single concentration (0.5%, 1.0%, or 3.0%) of a topically administered voriconazole solution every 4 hours for 7 doses. Anterior chamber paracentesis was performed and plasma samples were collected after application of the final dose. Voriconazole concentrations in aqueous humor (AH) and plasma were measured via high-performance liquid chromatography. Five horses received a single orally administered dose of voriconazole (4 mg/kg); anterior chamber paracentesis was performed, and voriconazole concentrations in AH were measured.

Results—Mean ± SD voriconazole concentrations in AH after topical administration of 0.5%, 1.0%, and 3.0% solutions (n = 4 eyes for each concentration) were 1.43 ± 0.37 μg/mL, 2.35 ± 0.78 μg/mL, and 2.40 ± 0.29 μg/mL, respectively. The 1.0% and 3.0% solutions resulted in significantly higher AH concentrations than the 0.5% solution, and only the 3.0% solution induced signs of ocular toxicosis. Voriconazole was detected in the plasma for 1 hour after the final topically administered dose of all solutions. Mean ± SD voriconazole concentration in AH after a single orally administered dose was 0.86 ± 0.22 μg/mL.

Conclusions and Clinical Relevance—Results indicated that voriconazole effectively penetrated the cornea in clinically normal eyes and reached detectable concentrations in the AH after topical administration. The drug also penetrated noninflamed equine eyes after oral administration. Low plasma concentrations of voriconazole were detected after topical administration.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effect of meloxicam and flunixin meglumine on recovery of ischemia-injured equine jejunum.

Animals—18 horses.

Procedures—Horses received butorphanol tartrate; were treated IV with saline (0.9% NaCl) solution (SS; 12 mL; n = 6), flunixin meglumine (1.1 mg/kg; 6), or meloxicam (0.6 mg/kg; 6) 1 hour before ischemia was induced for 2 hours in a portion of jejunum; and were allowed to recover for 18 hours. Flunixin and SS treatments were repeated after 12 hours; all 3 treatments were administered immediately prior to euthanasia. Selected clinical variables, postoperative pain scores, and meloxicam pharmacokinetic data were evaluated. After euthanasia, assessment of epithelial barrier function, histologic evaluation, and western blot analysis of ischemia-injured and control jejunal mucosa samples from the 3 groups were performed.

Results—Meloxicam- or flunixin-treated horses had improved postoperative pain scores and clinical variables, compared with SS-treated horses. Recovery of transepithelial barrier function in ischemia-injured jejunum was inhibited by flunixin but permitted similarly by meloxicam and SS treatments. Eighteen hours after cessation of ischemia, numbers of neutrophils in ischemia-injured tissue were higher in horses treated with meloxicam or flu-nixin than SS. Plasma meloxicam concentrations were similar to those reported previously, but clearance was slower. Changes in expression of proteins associated with inflammatory responses to ischemic injury and with different drug treatments occurred, suggesting cy-clooxygenase-independent effects.

Conclusions and Clinical Relevance—Although further assessment is needed, these data have suggested that IV administration of meloxicam may be a useful alternative to flunixin meglumine for postoperative treatment of horses with colic.

Full access
in American Journal of Veterinary Research