Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Henri J. van Bree x
  • Refine by Access: Content accessible to me x
Clear All Modify Search


Objective—To determine magnetic resonance imaging (MRI) vertebral ratio values representing vertebral canal height, vertebral canal shape, and vertebral body shape in Doberman Pinschers with and without disk-associated cervical spondylomyelopathy (DACSM) and clinically normal English Foxhounds.

Animals—Doberman Pinschers with (n = 18) and without (20) DACSM and clinically normal English Foxhounds (18).

Procedures—All dogs underwent low-field MRI of the cervical vertebral column. From 5 specific measurements made at C3 through C7, 4 linear vertebral ratios were calculated and assessed for correlation: vertebral canal height-to-body height ratio (CBHR), vertebral canal height-to-body length ratio (CBLR), caudal canal height-to-cranial canal height ratio (CCHR), and vertebral body length-to-height ratio (BLHR). The CBHR and CBLR described vertebral canal height, CCHR described vertebral canal shape, and BLHR described vertebral body shape. A midvertebral canal-occupying ratio (mVCOR) for the spinal cord was calculated at C5.

Results—Compared with both groups of unaffected dogs, CBHR, CBLR, and BLHR for Doberman Pinschers with DACSM were significantly smaller. The C7 CCHR was significantly larger in DACSM-affected Doberman Pinschers, compared with clinically normal English Foxhounds. Ratios did not differ significantly between unaffected Doberman Pinschers and clinically normal English Foxhounds. Correlation coefficients between CBHR, CBLR, and mVCOR were low and not significant.

Conclusions and Clinical Relevance—Doberman Pinschers with DACSM had significantly smaller vertebral canal heights and more square-shaped vertebral bodies, compared with unaffected Doberman Pinschers, combined with a funnel-shaped vertebral canal at C7. Breed-specific differences were not evident. Linear MRI vertebral canal-to-body ratios do not appear to predict relative vertebral canal stenosis.

Full access
in American Journal of Veterinary Research