Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Fred W. Keeley x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

SUMMARY

Articular cartilage specimens from the distal articular surface of 32 radiocarpal bones from 24 2- to 5-year-old horses were analyzed. The total collagen content was determined on the basis of the 4-hydroxyproline content, using a colorimetric method. A method for estimating the proportions of types-I and -II collagen by measuring spectrophotometric densities of specific cyanogen bromide peptide bands from mixtures of types-I and -II collagen on sodium dodecyl sulfate-polyacrylamide gels was used. The cyanogen bromide peptides representative of each collagen types-I and -II were identified. The peptide ratios were then computed for each of several standards of type-I and -II mixtures. A standard curve was derived from the correlation between these ratios and the corresponding proportions of type-II collagen in standard mixtures. Galactosamine and glucosamine content (hexosamines) were measured by ion chromatography. The galactosamine-to-glucosamine ratio, chondroitin sulfate and keratan sulfate values, and total glycosaminoglycan content were derived from the measured hexosamine content.

The total collagen content averaged 556 mg/g (55.6 mg/100 mg) of tissue (dry weight, [dw]). Type-II collagen was the major collagen type in normal articular cartilage specimens. The ratio of the area under the αl (II)CBIO peak to the area under the αl (I)CB 7,8 + αl (II)CB11 peak was a second-order polynomial function of the proportion of type-II collagen in the specimens. The mean galactosamine and glucosamine content were 20.6 mg/g and 7.9 mg/g (dw), respectively. The mean galactosamine-to-glucosamine ratio was 3.74 ± 0.62. Chondroitin sulfate values, keratan sulfate values, and total glycosaminoglycan content were 53.3 ± 4.9 mg/g, 19.9 ± 3.6 mg/g, and 73.2 ± 7.9 mg/g (dw), respectively. There was no significant correlation between the age of the horses and any of the chemical values (P > 0.1). The biochemical composition of articular cartilage in the horse is similar to that of other species.

Free access
in American Journal of Veterinary Research

SUMMARY

Periosteal autografts were used for repair of large osteochondral defects in 10 horses aged 2 to 3 years old. In each horse, osteochondral defects measuring 1.0 × 1.0 cm2 were induced bilaterally on the distal articular surface of each radial carpal bone. Control and experimental defects were drilled. Periosteum was harvested from the proximal portion of the tibia and was glued into the principal defects, using a fibrin adhesive. Control defects were glued, but were not grafted.

Sixteen weeks after the grafting procedure, the quality of the repair tissue of control and grafted defects was assessed biochemically. Total collagen content and the proportion of type-II collagen were determined. Galactosamine and glucosamine contents also were determined. From these measurements, contents of chondroitin and keratan sulfate and total glycosaminoglycan, and galactosamine-to-glucosamine ratio were calculated. All biochemical variables were compared with those of normal equine articular cartilage taken from the same site in another group of clinically normal horses. Total collagen content was determined on the basis of 4-hydroxyproline content, using a colorimetric method. The proportions of collagen types I and II in the repair tissue were assessed by electrophoresis of their cyanogen bromide-cleaved peptides on sodium dodecyl sulfate slab gels. Peptide ratios were computed and compared with those of standard mixtures of type-I and type-II collagens. Galactosamine and glucosamine contents were determined by use of ion chromatography.

In general, the biochemical composition of repair tissue of grafted and nongrafted defects was similar, but clearly differed from that of normal articular cartilage. Total glycosaminoglycan content, galactosamine and glucosamine contents, and galactosamine-to-glucosamine ratio of grafted and nongrafted defects were all significantly (P < 0.05) less than corresponding values in normal equine articular cartilage. By contrast, total collagen content of neocartilaginous tissues of grafted and nongrafted defects was greater than that of normal articular cartilage, although the difference was not significant. The proportion of type-I and type-II collagens in repair tissue in grafted and nongrafted defects was 70 and 30%, respectively. The fibrous nature of the repair tissue reported in a companion morphologic and histochemical study was substantiated by the biochemical results. We concluded that use of periosteal autografts did not improve the healing of osteochondral defects.

Free access
in American Journal of Veterinary Research