Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Florence E. Duggan x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To measure antibody titers against bovine coronavirus (BCV), determine frequency of BCV in nasal swab specimens, and compare calves treated for bovine respiratory tract disease (BRD) between those given an intranasally administered vaccine and control calves.

Design—Randomized clinical trial.

Animals—414 heifer calves.

Procedure—Intranasal BCV antigen concentration and antibody titer against BCV were measured on entry to a feedlot. Calves were randomly assigned to receive 3.0 mL of a modified-live virus vaccine against bovine enteric coronavirus and rotavirus or 3.0 mL of saline (0.9% NaCl) solution. Calves were confined to 1 of 2 pens, depending on vaccination status, for a minimum of 17 days of observation (range, 17 to 99). Selection of calves for treatment of BRD and scoring for severity of disease were done by veterinarians unaware of treatment status.

Results—Intranasal BCV (125/407 [31%]) and serum antibody titers ≥ 20 against BCV (246/396 [62%]) were identified in calves entering the feedlot. Vaccination was associated with significant decrease in risk of treatment for BRD; intranasal BCV on entry to the feedlot was associated with increased risk of treatment. Univariate analysis revealed that control calves with intranasal BRD on entry to the feedlot and those with antibody titer < 20 were significantly more likely to be treated for BRD.

Conclusions and Clinical Relevance—These data provide further evidence of an association between BCV and respiratory tract disease in feedlot calves. An intranasally administered vaccine appeared to reduce risk of treatment for BRD. (J Am Vet Med Assoc 2004;225:726–731)

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To test the hypothesis that feedlot cattle with acute interstitial pneumonia (AIP) have bacterial infection of the lung or liver and concurrent bovine respiratory syncytial virus (BRSV) infection significantly more often than pen mates without AIP.

Animals—39 feedlot cattle with signs consistent with AIP and no history of treatment with antimicrobials and 32 healthy control cattle from the same pens.

Procedure—Lung and liver specimens were obtained postmortem for bacterial or mycoplasmal culture and histologic examination; lung tissue was assessed for BRSV infection immunohistochemically.

Results—Among affected cattle, 26 had AIP confirmed histologically. Lung tissue from 11 cattle with AIP yielded microbial respiratory tract pathogens on culture; tissues from control animals yielded no microbial growth. In 4 cattle with AIP and 2 control animals, liver abscesses were detected; bacteria were isolated from abscessed tissue in 3 and 1 of those animals, respectively. Immunohistochemically, 9 cattle with AIP and no control animals were BRSV-positive. Histologically, 9 AIP-affected cattle had only acute alveolar damage with exudation, and the other 17 had acute exudation with type II pneumocyte hyperplasia. No lesions of AIP were detected in control animals. Only 4 AIP-affected cattle had bacterial infection of the lung with concurrent BRSV infection.

Conclusions and Clinical Relevance—Results indicated that microbial respiratory tract pathogens are more common in cattle with AIP than in healthy pen mates. Control of bacterial pneumonia late in the feeding period may reduce the incidence of AIP at feedlots where AIP is a problem. (Am J Vet Res 2004;65:1525–1532)

Full access
in American Journal of Veterinary Research