Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: David A. Wilson x
  • Analytic Techniques x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To compare data obtained with an inertial sensor system with results of subjective lameness examinations performed by 3 experienced equine veterinarians for evaluation of lameness in horses.

Animals—106 horses.

Procedures—Horses were evaluated for lameness with a body-mounted inertial sensor system during trotting in a straight line and via subjective evaluation by 3 experienced equine practitioners who performed complete lameness examinations including lunging in a circle and limb flexion tests. Agreement among evaluators regarding results of subjective evaluations and correlations and agreements between various inertial sensor measures and results of subjective lameness evaluations were determined via calculation of Fleiss’ κ statistic, regression analysis, and calculation of 95% prediction intervals.

Results—Evaluators agreed on classification of horses into 3 mutually exclusive lameness categories (right limb lameness severity greater than left limb lameness severity, left limb lameness severity greater than right limb lameness severity, or equal right and left limb lameness severity) for 58.8% (κ = 0.37) and 54.7% (κ = 0.31) of horses for forelimb and hind limb lameness, respectively. All inertial sensor measures for forelimb and hind limb lameness were positively and significantly correlated with results of subjective evaluations. Agreement between inertial sensors measures and results of subjective evaluations was fair to moderate for forelimb lameness and slight to fair for hind limb lameness.

Conclusions and Clinical Relevance—Results of lameness evaluation of horses with an inertial sensor system and via subjective lameness examinations were significantly correlated but did not have strong agreement. Inertial sensor-based evaluation may augment but not replace subjective lameness examination of horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine repeatability of a wireless, inertial sensor–based lameness evaluation system in horses.

Animals—236 horses.

Procedures—Horses were from 2 to 29 years of age and of various breeds and lameness disposition. All horses were instrumented with a wireless, inertial sensor-based motion analysis system on the head (accelerometer), pelvis (midline croup region [accelerometer]), and right forelimb (gyroscope) before evaluation in 2 consecutive trials, approximately 5 minutes apart, as the horse was trotted in a straight line. Signal-processing algorithms generated overall trial asymmetry measures for vertical head and pelvic movement and stride-by-stride differences in head and pelvic maximum and minimum positions between right and left sides of each stride. Repeatability was determined, and trial difference was determined for groups of horses with various numbers of strides for which data were collected per trial.

Results—Inertial sensor–based measures of torso movement asymmetry were repeatable. Repeatability for measures of torso asymmetry for determination of hind limb lameness was slightly greater than that for forelimb lameness. Collecting large numbers of strides degraded stride-to-stride repeatability but did not degrade intertrial repeatability.

Conclusions and Clinical Relevance—The inertial sensor system used to measure asymmetry of head and pelvic movement as an aid in the detection and evaluation of lameness in horses trotting in a straight line was sufficiently repeatable to investigate for clinical use.

Full access
in American Journal of Veterinary Research