Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: David A. Barker x
- Refine by Access: Content accessible to me x
Abstract
OBJECTIVE To determine from MRI measurements whether soft palate length (SPL) and thickness are correlated in dogs, evaluate the association between the olfactory bulb angle (OBA) and degree of brachycephalia, and determine the correlation between soft palate–epiglottis overlap and OBA in dogs.
ANIMALS 50 brachycephalic and 50 nonbrachycephalic client-owned dogs without abnormalities of the head.
PROCEDURES Medical records and archived midsagittal T2-weighted MRI images of brachycephalic and nonbrachycephalic dogs' heads were reviewed. Group assignment was based on breed. Data collected included weight, SPL and thickness, OBA, and the distance between the caudal extremity of the soft palate and the basihyoid. Soft palate length and thickness were adjusted on the basis of body weight.
RESULTS Brachycephalic dogs had significantly thicker soft palates and lower OBAs, compared with findings for nonbrachycephalic dogs. There was a significant negative correlation (r 2 = 0.45) between OBA and soft palate thickness. The correlation between SPL and OBA was less profound (r 2 = 0.09). The distance between the caudal extremity of the soft palate and the basihyoid was shorter in brachycephalic dogs than in nonbrachycephalic dogs. The percentage of epiglottis–soft palate overlap significantly decreased with increasing OBA (r 2 = 0.31).
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MRI images can be consistently used to assess anatomic landmarks for measurement of SPL and thickness, OBA, and soft palate-to-epiglottis distance in brachycephalic and nonbrachycephalic dogs. The percentage of epiglottis–soft palate overlap was significantly greater in brachycephalic dogs and was correlated to the degree of brachycephalia.
Abstract
Objective—To evaluate the pharmacokinetics of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).
Animals—9 healthy adult Hispaniolan Amazon parrots of unknown sex.
Procedures—Nalbuphine decanoate (37.5 mg/kg) was administered IM to all birds. Plasma samples were obtained from blood collected before (time 0) and 0.25, 1, 2, 3, 6, 12, 24, 48, and 96 hours after drug administration. Plasma samples were used for measurement of nalbuphine concentrations via liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were estimated with computer software.
Results—Plasma concentrations of nalbuphine increased rapidly after IM administration, with a mean concentration of 46.1 ng/mL at 0.25 hours after administration. Plasma concentrations of nalbuphine remained > 20 ng/mL for at least 24 hours in all birds. The maximum plasma concentration was 109.4 ng/mL at 2.15 hours. The mean terminal half-life was 20.4 hours.
Conclusions and Clinical Relevanc e—In Hispaniolan Amazon parrots, plasma concentrations of nalbuphine were prolonged after IM administration of nalbuphine decanoate, compared with previously reported results after administration of nalbuphine hydrochloride. Plasma concentrations that could be associated with antinociception were maintained for 24 hours after IM administration of 37.5 mg of nalbuphine decanoate/kg. Safety and analgesic efficacy of nalbuphine treatments in this species require further investigation to determine the potential for clinical use in pain management in psittacine species.
Abstract
Objective—To assess the pharmacokinetics of nalbuphine HCl after IV and IM administration to Hispaniolan Amazon parrots (Amazona ventralis).
Animals—8 healthy adult Hispaniolan Amazon parrots of unknown sex.
Procedures—Nalbuphine HCl (12.5 mg/kg) was administered IV and IM to all birds in a complete randomized crossover study design; there was a washout period of 21 days between subsequent administrations. Plasma samples were obtained from blood collected at predetermined time points for measurement of nalbuphine concentration by use of liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were estimated by use of computer software.
Results—Nalbuphine was rapidly eliminated with a terminal half-life of 0.33 hours and clearance of 69.95 mL/min/kg after IV administration and a half-life of 0.35 hours after IM administration. Volume of distribution was 2.01 L/kg after IV administration. The fraction of the dose absorbed was high (1.03) after IM administration. No adverse effects were detected in the parrots during the study.
Conclusions and Clinical Relevance—In Hispaniolan Amazon parrots, nalbuphine appeared to have good bioavailability after IM administration and was rapidly cleared after IV and IM administration. Safety and analgesic efficacy of various nalbuphine treatment regimens in this species require further investigation to determine the potential for clinical palliation of signs of pain in psittacine species.