Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Christina C. De Armond x
- Scientific Reports x
- Refine by Access: Content accessible to me x
Abstract
OBJECTIVE
To report clinical experience using virtual surgical planning (VSP) and surgical application of 3D printed custom surgical guides to facilitate uni- and biapical correction of antebrachial deformities in dogs.
ANIMALS
11 dogs (13 antebrachial deformity corrections).
PROCEDURES
Using CT-based bone models, VSP was performed, and surgical guides were designed and 3D printed. The guides were used to execute osteotomies and align bone segments. Postoperative CTs were obtained to compare limb alignment with the VSP. Long-term assessment of lameness and cosmesis were compared with preoperative status.
RESULTS
Guides were successfully utilized and postoperative analysis was available for 10 of 13 deformities. Guides were abandoned in 2 deformities due to soft tissue tension. Evaluation of postoperative frontal, sagittal, axial, and translational limb alignment revealed that over 90% of parameters were within the acceptable range of ≤ 5° angulation and rotation or ≤ 5 mm of translation from the VSP. Lameness scores were improved in 7/8 deformities with associated preoperative lameness, and posture was improved in 10/10 deformities in which guides were deployed. Complications included reduced range of carpal motion (n = 2), implant sensitivity (n = 2), fracture (n = 1), and tendon laceration (n = 1).
CLINICAL RELEVANCE
VSP and customized surgical guide application facilitated accurate antebrachial limb deformity correction in the majority of deformities in this case series. The use of VSP and 3D printed guides would appear to be a viable and accurate approach for correction of both uni- and biapical antebrachial deformities in dogs.