Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Chee Kin Lim x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To estimate the left atrium–to–aorta ratio (LA:Ao) and establish 95% prediction intervals for left ventricular M-mode transthoracic echocardiographic measurements in clinically normal adult Dachshunds.

ANIMALS 40 healthy Dachshunds.

PROCEDURES For each dog, 3 standard 2-D echocardiographic methods (diameter, circumference, and cross-sectional area) were used to measure the left atrium and aorta and calculate the LA:Ao from right parasternal short axis (RPSA) images obtained at the level of the aortic valve cusps. Left ventricular M-mode measurements were acquired from RPSA images obtained at the chordal level immediately below the mitral valve. Descriptive data were generated, and the 95% prediction intervals were calculated by use of an allometric scaling equation and linear regression and compared with those calculated on the basis of data obtained from dogs of multiple breeds in a previous study.

RESULTS The mean (SD) LA:Ao was 1.40 (0.13), 2.09 (0.17), and 2.85 (0.48) for the diameter, circumference, and cross-sectional area methods, respectively. The 95% prediction intervals for the left ventricular M-mode measurements determined by an allometric scaling equation on the basis of Dachshund-specific data were narrower than those determined on the basis of data obtained from dogs of multiple breeds. For that allometric equation, scaling exponents on the basis of Dachshund-specific data ranged from 0.129 to 0.397 and did not absolutely conform to the presumed index for linear measurements (ie, body weight0.333).

CONCLUSIONS AND CLINICAL RELEVANCE The LA:Aos and 95% prediction intervals calculated in this study can be used as preliminary guidelines for echocardiographic measurements of clinically normal Dachshunds.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To determine the optimal protocol for acquisition of CT images of the dentition in alpacas.

ANIMALS 3 healthy adult male alpacas.

PROCEDURES Each alpaca was anesthetized with an IM injection of a combination of ketamine, xylazine, and butorphanol and positioned in sternal recumbency on the CT couch with its legs folded in a natural cush position and its head positioned within the isocenter of the gantry of a 64-slice CT scanner. Images were acquired by means of 6 protocols (sequential and helical modes at slice thicknesses of 1.25, 2.5, and 5 mm). Five images (2 molar, 2 premolar, and mandibular incisor teeth) were selected from each protocol for evaluation by 3 veterinary radiologists. For each image, tooth root visibility and sharpness and image noise artifact were subjectively evaluated on a 3-point scoring system.

RESULTS Slice thickness significantly affected tooth root visibility and tooth root sharpness but did not affect image noise artifact. Acquisition mode significantly affected tooth root visibility and tooth root sharpness as well as image noise artifact. Tooth root visibility and sharpness did not differ significantly between the helical and sequential images when the slice thickness was 1.25 mm. Image noise artifact was greater for helical images than sequential images but did not differ by slice thickness within either acquisition mode.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that for a 64-slice CT scanner, the optimal protocol for the acquisition of CT images of the dentition in alpacas was a sequential scan with a slice thickness of 1.25 mm.

Full access
in American Journal of Veterinary Research