Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Butch KuKanich x
  • Ophthalmology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

OBJECTIVE To determine the effect of oral administration of robenacoxib on inhibition of anterior chamber paracentesis (ACP)-induced breakdown of the blood-aqueous barrier (BAB) and assess whether robenacoxib can cross an intact BAB in healthy cats.

ANIMALS 12 healthy adult domestic shorthair cats.

PROCEDURES Cats received robenacoxib (6-mg tablet in a treat, PO; n = 6) or a control treatment (treat without any drug, PO; 6) once daily for 3 days, beginning 1 day before ACP. One eye of each cat served as an untreated control, whereas the other underwent ACP, during which a 30-gauge needle was used to aspirate 100 μL of aqueous humor for determination of robenacoxib concentration. Both eyes of each cat underwent anterior chamber fluorophotometry at 0 (immediately before), 6, 24, and 48 hours after ACP. Fluorescein concentration and percentage fluorescein increase were used to assess extent of ACP-induced BAB breakdown and compared between cats that did and did not receive robenacoxib.

RESULTS Extent of BAB breakdown induced by ACP did not differ significantly between cats that did and did not receive robenacoxib. Low concentrations of robenacoxib were detected in the aqueous humor (mean, 5.32 ng/mL; range, 0.9 to 16 ng/mL) for 5 of the 6 cats that received the drug.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that oral administration of robenacoxib did not significantly decrease extent of BAB breakdown in healthy cats. Detection of low robenacoxib concentrations in the aqueous humor for most treated cats indicated that the drug can cross an intact BAB.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To quantify plasma concentrations and determine adverse ocular, renal, or hepatic effects associated with repeated topical ophthalmic application of 0.1% diclofenac to healthy cats.

ANIMALS 8 healthy sexually intact male cats.

PROCEDURES A randomized, placebo-controlled crossover study was conducted. A topical formulation of 0.1% diclofenac was administered 4 times/d for 7 days to 4 cats, and artificial tear (control) solution was administered to the other 4 cats. After a 12-day washout period, cats received the other treatment. Ophthalmic examinations were performed daily. Plasma samples were obtained on days 1 and 7 for pharmacokinetic analysis. A CBC, serum biochemical analysis, urinalysis, determination of urine protein-to-creatinine ratio, and determination of glomerular filtration rate were performed before the start of the study and after each 7-day treatment period.

RESULTS Mild conjunctival hyperemia was the only adverse ocular effect detected. Maximal drug concentration and area under the curve were significantly higher on day 7 than on day 1. Diclofenac-treated cats had a significantly lower glomerular filtration rate than did control-treated cats after the second but not after the first treatment period, presumably associated with iatrogenic hypovolemia.

CONCLUSIONS AND CLINICAL RELEVANCE Topical ophthalmic administration of 0.1% diclofenac was well tolerated in healthy cats, with only mild signs of ocular irritation. Detectable systemic concentrations of diclofenac were achieved with accumulation over 7 days. Systemic absorption of diclofenac may be associated with reduced glomerular filtration rate, particularly in volume-contracted animals. Topical ophthalmic 0.1% diclofenac should be used with caution in volume-contracted or systemically ill cats.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To quantify plasma concentrations of prednisolone and dexamethasone (peripheral and jugular) and cortisol following topical ophthalmic application of 1% prednisolone acetate and 0.1% dexamethasone to healthy adult dogs.

ANIMALS

12 purpose-bred Beagles.

PROCEDURES

Dogs received 1 drop of 1% prednisolone acetate (n = 6) or neomycin polymyxin B dexamethasone (ie, 0.1% dexamethasone; 6) ophthalmic suspension in both eyes every 6 hours for 14 days. Blood samples (peripheral and jugular) were collected on days 0, 1, 7, and 14 and analyzed for plasma prednisolone and dexamethasone concentrations. Plasma cortisol concentrations were measured at the beginning of the study and following topical drug administration.

RESULTS

Both drugs demonstrated systemic absorption. Prednisolone was detected on days 1, 7, and 14 (median plasma concentration, 24.80 ng/mL; range, 6.20 to 74.00 ng/mL), and dexamethasone was detected on days 1, 7, and 14 (2.30 ng/mL; 0 to 17.70 ng/mL). Neither prednisolone nor dexamethasone were detected in plasma samples on day 0 (baseline). Sampling from the jugular vein resulted in higher plasma drug concentrations than from a peripheral vein when samples from each day were combined. Plasma cortisol concentrations were significantly lower than baseline following 14 days of treatment with topical prednisolone acetate and dexamethasone.

CLINICAL RELEVANCE

Prednisolone and dexamethasone are detected in the plasma of healthy dogs following topical ophthalmic administration 4 times/d with prednisolone concentrations being close to a physiologic dose of orally administered prednisolone. Additional research is needed to evaluate the systemic absorption of these medications in dogs with ocular inflammation.

Full access
in American Journal of Veterinary Research