Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Alan W Spier x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective—To measure QT interval duration and QT dispersion in Boxers and to determine whether QT variables correlate with indices of disease severity in Boxers with familial ventricular arrhythmias, including the number of ventricular premature complexes per day, arrhythmia grade, and fractional shortening.

Animals—25 Boxers were evaluated by ECG and echocardiography.

Procedure—The QT interval duration was measured from 12-lead ECG and corrected for heart rate (QTc), using Fridericia's formula. The QT and QTc were calculated for each lead, from which QT and QTc dispersion were determined. Echocardiography and 24-hour ambulatory ECG were performed to evaluate for familial ventricular arrhythmias. Total number of ventricular premature complexes, arrhythmia grade, and fractional shortening were determined and used as indices of disease severity.

Results—There was no correlation between any QT variable and total number of ventricular premature complexes, arrhythmia grade, or fractional shortening. No difference between QT dispersion and QTc dispersion was identified, and correction for heart rate did not affect the results.

Conclusions and Clinical Relevance—QT interval duration and dispersion did not correlate with indices of disease severity for familial ventricular arrhythmias. Heart rate correction of the QT interval did not appear to be necessary for QT dispersion calculation in this group of dogs. QT dispersion does not appear to be a useful noninvasive diagnostic tool in the evaluation of familial ventricular arrhythmias of Boxers. Identification of affected individuals at risk for sudden death remains a challenge in the management of this disease. (Am J Vet Res 2001;62:1481–1485)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the coding region of the cardiac actin gene in Doberman Pinschers with dilated cardiomyopathy (DCM) for mutations that could be responsible for the development of the condition

Animals—28 dogs (16 Doberman Pinschers with DCM and 12 mixed-breed control dogs).

Procedure—Ten milliliters of blood was collected from each dog for DNA extraction. Polymerase chain reaction (PCR) primers were designed to amplify canine exonic regions, using the sequences of exons 2 to 6 of the cardiac actin gene. Single-stranded conformational polymorphism analysis was performed for each exon with all samples. Autoradiographs were analyzed for banding patterns specific to affected dogs. The DNA sequencing was performed on a selected group of affected and control dogs.

Results—Molecular analysis of exons 2 to 6 of the cardiac actin gene did not reveal any differences in base pairs between affected dogs and control dogs selected for DNA evaluation.

Conclusions—Mutations in exons 5 and 6 of the cardiac actin gene that have been reported in humans with familial DCM do not appear to be the cause of familial DCM in Doberman Pinschers. Additionally, evaluation of exons 2 to 6 for causative mutations did not reveal a cause for inherited DCM in these Doberman Pinschers. Although there is evidence that DCM in Doberman Pinschers is an inherited problem, a molecular basis for this condition remains unresolved. Evaluation of other genes coding for cytoskeletal proteins is warranted. ( Am J Vet Res 2001;62:33–36)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine electrocardiographic parameters in healthy llamas and alpacas.

Animals—23 llamas and 12 alpacas.

Procedure—Electrocardiography was performed in nonsedated standing llamas and alpacas by use of multiple simultaneous lead recording (bipolar limb, unipolar augmented limb, and unipolar precordial leads).

Results—Common features of ECGs of llamas and alpacas included low voltage of QRS complexes, variable morphology of QRS complexes among camelids, and mean depolarization vectors (mean electrical axes) that were directed dorsocranially and to the right. Durations of the QT interval and ST segment were negatively correlated with heart rate.

Conclusions and Clinical Relevance—ECGs of acceptable quality can be consistently recorded in nonsedated standing llamas and alpacas. Features of ECGs in llamas and alpacas are similar to those of other ruminants. Changes in the morphology of the QRS complexes and mean electrical axis are unlikely to be sensitive indicators of ventricular enlargement in llamas and alpacas. (Am J Vet Res 2004;65:1719–1723)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the potential importance of dystrophin, α-sarcoglycan (adhalin), and β-dystroglycan, by use of western blot analysis, in several breeds of dogs with dilated cardiomyopathy.

Sample Population—Myocardial samples obtained from 12 dogs were evaluated, including tissues from 7 dogs affected with dilated cardiomyopathy, 4 control dogs with no identifiable heart disease (positive control), and 1 dog affected with Duchenne muscular dystrophy (negative control for dystrophin). Of the affected dogs, 4 breeds were represented (Doberman Pinscher, Dalmatian, Bullmastiff, and Irish Wolfhound).

Procedure—Western blot analysis was used for evaluation of myocardial samples obtained from dogs with and without dilated cardiomyopathy for the presence of dystrophin and 2 of its associated glycoproteins, α-sarcoglycan and β-dystroglycan.

Results—Detectable differences were not identified between dogs with and without myocardial disease in any of the proteins evaluated.

Conclusions and Clinical Relevance—Abnormalities in dystrophin, α-sarcoglycan, and β-dystroglycan proteins were not associated with the development of dilated cardiomyopathy in the dogs evaluated in this study. In humans, the development of molecular biological techniques has allowed for the identification of specific causes of dilated cardiomyopathy that were once considered to be idiopathic. The use of similar techniques in veterinary medicine may aid in the identification of the cause of idiopathic dilated cardiomyopathy in dogs, and may offer new avenues for therapeutic intervention. ( Am J Vet Res 2001;62:67–71)

Full access
in American Journal of Veterinary Research