Search Results
You are looking at 21 - 22 of 22 items for
- Author or Editor: Luc Duchateau x
- Refine by Access: Content accessible to me x
Abstract
Objective—To evaluate the use of transcranial magnetic stimulation for differentiating between clinically relevant and clinically irrelevant cervical spinal cord compression on magnetic resonance imaging (MRI).
Design—Validation study.
Animals—Clinically normal Doberman Pinschers without (n = 11) and with (6) spinal cord compression on MRI and 16 Doberman Pinschers with disk-associated wobbler syndrome (DAWS).
Procedures—After dogs were sedated, transcranial magnetic motor evoked potentials were recorded from the extensor carpi radialis muscle (ECRM) and cranial tibial muscle (CTM). Onset latencies and peak-to-peak amplitudes were measured. Magnetic resonance imaging was performed to identify spinal cord compression.
Results—There were significant differences in ECRM and CTM onset latencies between Doberman Pinschers with DAWS and each of the 2 groups of clinically normal dogs, but there were no significant differences in ECRM and CTM onset latencies between the 2 groups of clinically normal dogs. There were significant differences in CTM peak-to-peak amplitudes between Doberman Pinschers with DAWS and each of the 2 groups of clinically normal dogs, but there were no significant differences in ECRM peak-to-peak amplitudes among groups or in CTM peak-to-peak amplitudes between the 2 groups of clinically normal dogs. There was a significant correlation between severity of spinal cord compression and ECRM onset latency, CTM onset latency, and CTM peak-to-peak amplitude.
Conclusions and Clinical Relevance—Results suggested that transcranial magnetic stimulation may be a useful diagnostic tool to differentiate between clinically relevant and clinically irrelevant spinal cord compression identified on MRI alone.
Abstract
OBJECTIVE To evaluate lameness and morphological changes associated with an osteochondral fragment–groove procedure as a means of experimental induction of metacarpophalangeal (MCP) joint osteoarthritis within an 11-week period in horses.
ANIMALS 6 nonlame adult warmbloods.
PROCEDURES The right MCP joint of each horse underwent an osteochondral fragment–groove procedure (day 0). After 1 week of stall rest (ie, starting day 7), each horse was trained daily on a treadmill. Weekly, horses underwent visual and inertial sensor-based assessments of lameness. Both MCP joints were assessed radiographically on days 0 (before surgery), 1, 35, and 77. A synovial fluid sample was collected from the right MCP joint on days 0 (before surgery), 35, 36, 49, 63, and 77 for cytologic and biomarker analyses. On day 77, each horse was euthanized; both MCP joints were evaluated macroscopically and histologically.
RESULTS Right forelimb lameness was detected visually and by the inertial sensor system when horses were moving on a straight line after distal forelimb flexion or circling left on days 14 to 77. Compared with presurgical values, synovial fluid interleukin-6, prostaglandin E2, hyaluronic acid, and interleukin-1 receptor antagonist protein concentrations were increased at 2 or 3 time points, whereas tumor necrosis factor-α and interleukin-10 concentrations were decreased at 1 time point. Gross examination of all right MCP joints revealed synovitis and wear lines; synovitis was confirmed histologically.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that a combined osteochondral fragment–groove procedure can be used to induce clinically and grossly observable early MCP joint osteoarthritis during an 11-week period in horses.