Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Richard A. LeCouteur x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate deafness in American Paint Horses by phenotype, clinical findings, brainstem auditory-evoked responses (BAERs), and endothelin B receptor (EDNBR) genotype.

Design—Case series and case-control studies.

Animals—14 deaf American Paint Horses, 20 suspected-deaf American Paint Horses, and 13 nondeaf American Paint Horses and Pintos.

Procedures—Horses were categorized on the basis of coat color pattern and eye color. Testing for the EDNBR gene mutation (associated with overo lethal white foal syndrome) and BAERs was performed. Additional clinical findings were obtained from medical records.

Results—All 14 deaf horses had loss of all BAER waveforms consistent with complete deafness. Most horses had the splashed white or splashed white–frame blend coat pattern. Other patterns included frame overo and tovero. All of the deaf horses had extensive head and limb white markings, although the amount of white on the neck and trunk varied widely. All horses had at least 1 partially heterochromic iris, and most had 2 blue eyes. Ninety-one percent (31/34) of deaf and suspected-deaf horses had the EDNBR gene mutation. Deaf and suspected-deaf horses were used successfully for various performance events. All nondeaf horses had unremarkable BAER results.

Conclusions and Clinical Relevance—Veterinarians should be aware of deafness among American Paint Horses, particularly those with a splashed white or frame overo coat color pattern, blend of these patterns, or tovero pattern. Horses with extensive head and limb markings and those with blue eyes appeared to be at particular risk.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine the neurologic effects of reduced intake of phenylalanine and tyrosine in black-haired cats.

Animals—53 specific pathogen-free black domestic shorthair cats.

Procedure—Cats were fed purified diets containing various concentrations of phenylalanine and tyrosine for ≤ 9 months. Blood samples were obtained every 2 months for evaluation of serum aromatic amino acid concentrations. Cats were monitored for changes in hair color and neurologic or behavioral abnormalities. Three cats with neurologic deficits underwent clinical and electrophysiologic investigation; muscle and nerve biopsy specimens were also obtained from these cats.

Results—After 6 months, neurologic and behavioral abnormalities including vocalization and abnormal posture and gait were observed in cats that had received diets containing < 16 g of total aromatic amino acid/kg of diet. Electrophysiologic data and results of microscopic examination of muscle and nerve biopsy specimens from 3 cats with neurologic signs were consistent with sensory neuropathy with primary axonal degeneration. Changes in hair color were detected in cats from all groups receiving < 16 g of phenylalanine plus tyrosine/kg of diet.

Conclusions and Clinical Relevance—Findings suggested that chronic dietary restriction of phenylalanine and tyrosine in cats may result in a predominantly sensory neuropathy. In cats, the long-term nutritional requirement for phenylalanine and tyrosine appears to be greater for normal neurologic function than that required in short-term growth experiments. Official present-day recommendations for dietary phenylalanine and tyrosine in cats may be insufficient to support normal long-term neurologic function. ( Am J Vet Res 2004;65:671–680)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To describe epidemiological, clinical, and pathological features of neuroaxonal dystrophy in Quarter Horses (QHs) on a single farm.

Design—Prospective case series.

Animals—148 horses.

Procedures—Neurologic, pathological, and toxicological evaluations were completed in selected neurologically affected horses over a 2-year period. Descriptive statistical analysis was performed.

Results—87 QHs and 1 QH-crossbred horse were affected. Most (50/88 [56.8%]) affected horses were 1 to 2 years old (median age, 2 years [range, 2 months to 34 years]). Neurologic deficits included obtundation (53/88 [60%] horses), decreased to absent menace response (33/88 [37.5%]), proprioceptive positioning deficits, wide-based stance, ataxia, and dysmetria (88/88 [100%]). Most (78/88 [88.6%]) horses had mild ataxia, but some (10/88 [11.4%]) had moderate to severe ataxia. Low serum concentrations of vitamin E (≤ 2 mg/L) were detected in 3 index case horses and 16 of 17 randomly selected horses (13/14 affected and 3/3 unaffected) during study year 1. Dietary vitamin E supplementation did not improve neurologic deficits in affected horses; vitamin E administration in pregnant mares appeared to decrease but not prevent disease development among offspring born the following year. Lesions detected at necropsy included bilaterally symmetric neuroaxonal degeneration with axonal spheroids in the nucleus gracilis, nucleus cuneatus medialis, nucleus cuneatus lateralis, and nucleus thoracicus (5/5 horses).

Conclusions and Clinical Relevance—Neuroaxonal dystrophy should be considered in evaluation of young horses with ataxia and proprioceptive positioning deficits. Vitamin E deficiency may contribute to disease severity.

Full access
in Journal of the American Veterinary Medical Association