Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Susan M. Stover x
  • Refine by Access: Open Access articles x
Clear All Modify Search



To evaluate the biomechanical properties of the mandibles of cats with experimentally created osteotomies simulating oblique ramus fractures, which were stabilized with malleable L-miniplates with either locking screws [locking construct (LC)] or nonlocking screws [nonlocking construct (NLC)], compared with those for intact mandibles.


20 mandibles from 10 adult cat cadavers.


A block study design was adopted to allocate the mandibles of each cadaver to 2 of the 3 test groups (LC, NLC, or intact mandible). Mandibles within each cadaver were allocated systematically to a test group. For mandibles assigned to an LC and an NLC, a complete oblique osteotomy was performed from the mid rostral aspect of the ramus in a caudoventral direction. All mandibles were loaded in a single-load-to-failure test through cantilever bending. Load and actuator displacement were recorded simultaneously. Mode of failure and radiographic evidence of damage to tooth roots and the mandibular canal were evaluated. Biomechanical properties were compared among the groups.


No iatrogenic tooth root damage was evident, but all mandibles with an LC and an NLC had evidence of screw invasion into the mandibular canal. Plated mandibles had significantly less stiffness and bending moment than intact mandibles. Stiffness was not significantly different between the LC and the NLC; the NLC had a greater bending moment at failure than the LC. The pre-yield stiffness of plated mandibles decreased when the number of screw holes overlapping the mandibular canal increased.


The use of a malleable L-miniplate in a caudal mandibular fracture model is feasible. Both the LC and the NLC were inferior mechanically to intact mandibles. Type of construct used did not affect the construct stiffness significantly in tested mandibles.

Open access
in American Journal of Veterinary Research