Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Robert Pollet x
  • Refine by Access: Open Access articles x
Clear All Modify Search

Abstract

OBJECTIVE

To examine the susceptibility of cultured primary equine bronchial epithelial cells (EBECs) to a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus relative to human bronchial epithelial cells (HBECs).

SAMPLE

Primary EBEC cultures established from healthy adult horses and commercially sourced human bronchial epithelial cells (HBECs) were used as a positive control.

METHODS

Angiotensin-converting enzyme 2 (ACE2) expression by EBECs was demonstrated using immunofluorescence, western immunoblot, and flow cytometry. EBECs were transduced with a lentivirus pseudotyped with the SARS-CoV-2 spike protein that binds to ACE2 and expresses the enhanced green fluorescent protein (eGFP) as a reporter. Cells were transduced with the pseudovirus at a multiplicity of infection of 0.1 for 6 hours, washed, and maintained in media for 96 hours. After 96 hours, eGFP expression in EBECs was assessed by fluorescence microscopy of cell cultures and quantitative PCR.

RESULTS

ACE2 expression in EBECs detected by immunofluorescence, western immunoblotting, and flow cytometry was lower in EBECs than in HBECs. After 96 hours, eGFP expression in EBECs was demonstrated by fluorescence microscopy, and mean ΔCt values from quantitative PCR were significantly (P < .0001) higher in EBECs (8.78) than HBECs (3.24) indicating lower infectivity in EBECs.

CLINICAL RELEVANCE

Equine respiratory tract cells were susceptible to cell entry with a SARS-CoV-2 pseudovirus. Lower replication efficiency in EBECs suggests that horses are unlikely to be an important zoonotic host of SARS-CoV-2, but viral mutations could render some strains more infective to horses. Serological and virological monitoring of horses in contact with persons shedding SARS-CoV-2 is warranted.

Open access
in American Journal of Veterinary Research