Search Results

You are looking at 1 - 8 of 8 items for :

  • "veterinary microbiology" x
  • Infectious Disease x
  • Refine by Access: All Content x
Clear All

Abstract

Objective—To compare pathogenicity of an emergent abortifacient Campylobacter jejuni (IA 3902) with that of reference strains after oral inoculation in pregnant guinea pigs.

Animals—58 pregnant guinea pigs.

Procedures—12 animals were challenged IP with C jejuni IA 3902 along with 5 sham-inoculated control animals to confirm abortifacient potential. Once pathogenicity was confirmed, challenge via oral inoculation was performed whereby 12 guinea pigs received IA 3902, 12 received C jejuni isolated from ovine feces (OF48), 12 received a fully sequenced human C jejuni isolate (NCTC 11168), and 5 were sham-inoculated control animals. After abortions, guinea pigs were euthanized; samples were collected for microbial culture, histologic examination, and immunohistochemical analysis.

ResultsC jejuni IA 3902 induced abortion in all 12 animals following IP inoculation and 6 of 10 animals challenged orally. All 3 isolates colonized the intestines after oral inoculation, but only IA 3902 induced abortion. Evidence of infection existed for both IA 3902 and NCTC 11168; however, C jejuni was only recovered from fetoplacental units of animals inoculated with IA 3902. Immunohistochemical analysis localized C jejuni IA 3902 infection to subplacental trophoblasts, perivascular tissues, and phagocytes in the placental transitional zone.

Conclusions and Clinical Relevance—This study revealed that C jejuni IA 3902 was a unique, highly abortifacient strain with the ability to colonize the intestines, induce systemic infection, and cause abortion because of its affinity for the fetoplacental unit. Guinea pigs could be effectively used in the study of septic abortion after oral inoculation with this Campylobacter strain.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether porcine genogroup 1 torque teno virus (g1-TTV) can infect and cause disease in gnotobiotic swine.

Sample Population—20 conventional baby pigs and 46 gnotobiotic baby pigs.

Procedures—Porcine g1-TTV was transmitted from conventional swine to gnotobiotic pigs via pooled leukocyte-rich plasmas (n = 18) that had positive results for g1-TTV DNA. Bone marrow–liver homogenates that had positive results for torque teno virus (TTV) were used in 4 serial passages in gnotobiotic pigs (2 pigs/passage). A pathogenesis experiment was conducted with in vivo passages of g1-TTV in various groups of gnotobiotic pigs.

Results—All g1-TTV inoculated pigs had no clinical signs but developed interstitial pneumonia, transient thymic atrophy, membranous glomerulonephropathy, and modest lymphocytic to histiocytic infiltrates in the liver after inoculation with the TTV-containing tissue homogenate; these changes were not detected in uninoculated control pigs or pigs injected with tissue homogenate devoid of TTV DNAs. In situ hybridization was used to identify g1-TTV DNAs in bone marrow mononuclear cells.

Conclusions and Clinical Relevance—Analysis of these data revealed that porcine g1-TTV was readily transmitted to TTV-naïve swine and that infection was associated with characteristic pathologic changes in gnotobiotic pigs inoculated with g1-TTV. Thus, g1-TTV could be an unrecognized pathogenic viral infectious agent of swine. This indicated a directly associated induction of lesions attributable to TTV infection in swine for a virus of the genus Anellovirus.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare efficacy of 2 commercial ovine Campylobacter vaccines and an experimental bacterin in guinea pigs following IP inoculation with Campylobacter jejuni IA3902.

Animals—51 female guinea pigs.

Procedures—Pregnant and nonpregnant animals were randomly assigned to 1 of 4 treatment groups and administered a commercial Campylobacter vaccine labeled for prevention of campylobacteriosis in sheep via two 5-mL doses 14 days apart (vaccine A; n = 13), another labeled for prevention of campylobacteriosis via two 2-mL doses (vaccine B; 12), an experimental bacterin prepared from the challenge strain (12), or a sham vaccine (14). Ten days later, animals were challenged IP with C jejuni IA3902; 48 hours later, animals were euthanized, complete necropsy was performed, and blood and tissue samples were obtained for bacteriologic culture.

Results—Administration of vaccine B or the experimental bacterin, but not vaccine A, significantly reduced 48-hour infection rates versus administration of the sham vaccine. A significantly reduced 48-hour infection rate was associated with administration of vaccine B independent of pregnancy status.

Conclusions and Clinical Relevance—Administration of vaccine B significantly reduced infection in guinea pigs challenged with C jejuni IA3902, similar to a homologous bacterin. Results suggested that vaccine B or an autogenous product may be effective in controlling ovine campylobacteriosis caused by this emergent abortifacient strain. Bacteriologic culture of blood, liver, bile, and uterus in nonpregnant guinea pigs 48 hours after inoculation may be a useful screening tool for comparing efficacy of C jejuni vaccines.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether genogroup 1 porcine torque teno virus (g1-TTV) can potentiate clinical disease associated with porcine circovirus type 2 (PCV2).

Sample population—33 gnotobiotic baby pigs.

Procedures—Pigs were allocated into 7 groups: group A, 5 uninoculated control pigs from 3 litters; group B, 4 pigs oronasally inoculated with PCV2 alone; group C, 4 pigs inoculated IP with first-passage g1-TTV alone; group D, 4 pigs inoculated IP with fourth-passage g1-TTV alone; group E, 6 pigs inoculated IP with first-passage g1-TTV and then oronasally inoculated with PCV2 7 days later; group F, 6 pigs inoculated IP with fourth-passage g1-TTV and then inoculated oronasally with PCV2 7 days later; and group G, 4 pigs inoculated oro-nasally with PCV2 and then inoculated IP with fourth-passage g1-TTV 7 days later.

Results—6 of 12 pigs inoculated with g1-TTV prior to PCV2 developed acute onset of postweaning multisystemic wasting syndrome (PMWS). None of the pigs inoculated with g1-TTV alone or PCV2 alone or that were challenge exposed to g1-TTV after establishment of infection with PCV2 developed clinical illness. Uninoculated control pigs remained healthy.

Conclusions and Clinical Relevance—These data implicated g1-TTV as another viral infection that facilitates PCV2-induced PMWS. This raises the possibility that torque teno viruses in swine may contribute to disease expression currently associated with only a single infectious agent.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether commercial Mycoplasma hyopneumoniae bacterins sold for use in swine contain porcine torque teno virus (TTV).

Sample Population—22 commercially available M hyopneumoniae bacterins.

Procedures—Direct and nested PCR assays for genogroup-specific TTV DNAs were performed on serials of M hyopneumoniae bacterins by use of published and custom-designed primer pairs at 3 laboratories in North America and Europe.

Results—Of the 22 bacterins tested by use of direct and nested PCR assays, 7 of 9 from the United States, 2 of 5 from Canada, and 4 of 8 from Europe contained genogroup 1– and genogroup 2–TTV DNAs. In some bacterins, the TTV DNAs were readily detected by use of direct PCR assays.

Conclusions and Clinical Relevance—Analysis of these data indicated that many of the commercially available M hyopneumoniae bacterins were contaminated with TTV DNA. It is possible that some of these bacterins could inadvertently transmit porcine TTV infection to TTV-naïve swine.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether porcine dermatitis and nephropathy syndrome (PDNS) could be experimentally induced in gnotobiotic swine.

Sample Population—Plasma samples from 27 sows and 20 conventional weaned piglets were obtained, and 30 gnotobiotic pigs were used in experiments.

Procedures—3 experiments were conducted. Groups of 3-day-old gnotobiotic pigs were inoculated with pooled plasma samples obtained from healthy feeder pigs in a herd that was in the initial phases of an outbreak of respiratory disease; gross and histologic lesions of PDNS were detected in the inoculated pigs. In a second experiment, 2- and 3-day-old gnotobiotic pigs were inoculated with porcine reproductive respiratory syndrome virus (PRRSV) and with PRRSV-negative tissue homogenate containing genogroup 1 torque teno virus (g1-TTV). Lesions of PDNS were detected.

Results—Pigs inoculated with pooled plasma or the combination of tissue-culture–origin PRRSV and g1-TTV tissue homogenate developed systemic hemostatic defects, bilaterally symmetric cutaneous hemorrhages, generalized edema, icterus, bilaterally symmetric renal cortical hemorrhage, dermal vasculitis with hemorrhage, and interstitial pneumonia consistent with a clinical and pathologic diagnosis of PDNS. The PRRSV RNAs and g1-TTV DNAs were detected in plasma; all pigs seroconverted to PRRSV, and all had negative results for porcine circovirus type 2 when tested by use of PCR assays.

Conclusions and Clinical Relevance—These data suggested that PDNS is a manifestation of disseminated intravascular coagulation in swine. For the experimental conditions reported here, combined infection with g1-TTV and PRRSV was implicated in the genesis of these lesions.

Full access
in American Journal of Veterinary Research

, ed. Veterinary microbiology . Cambridge, Mass : Blackwell Scientific , 2004 ; 257 – 259 . 2. Granquist EG Stuen S Lundgren AM , et al. Outer membrane protein sequence variation in lambs experimentally infected with Anaplasma

Full access
in American Journal of Veterinary Research

. Corynebacterium . In: Hirsh D MacLachlan N Walker R , eds. Veterinary microbiology . Ames, Iowa : Blackwell , 2004 ; 175 – 180 . 6. Dickinson C Bull L . Studies on infection by and resistance to the Prisesz-Nocard bacillus 2. Susceptibility

Full access
in American Journal of Veterinary Research