Search Results

You are looking at 1 - 5 of 5 items for :

  • "colostrum" x
  • Clinical Pathology x
  • Refine by Access: All Content x
Clear All

SUMMARY

Analysis of hepatic enzyme activities in serum samples from 1- to 3-day-old pups revealed alkaline phosphatase (alp) activities that were 30 times higher and γ-glutamyltransferase (ggt) activities that were 100 times higher than activities in clinically normal adult dogs. A study was conducted to investigate high enzyme activity in pups and to determine whether there is any association between serum enzyme activity and colostrum ingestion, passive transfer of maternal serum enzyme (in colostrum or in utero), or excessive renal or hepatic tissue enzymes. Serum enzyme activity was quantified in 15 neonatal pups before and after ingestion of colostrum and in 3 colostrum-deprived neonates fed a milk substitute. Serum samples were collected on postpartum days 0, 1, 10, 15, and 30. Enzyme activity was also quantified in serum from pregnant and lactating bitches (collected on days -2, 0, 1, 10, 30), hepatic and renal tissue from clinically normal adult dogs and 1-day-old pups, colostrum, milk (collected on days 10 and 30), and milk replacer.

Significant (P < 0.01) differences in serum ggt and alp activities between colostrum-deprived and suckling pups did not exist before initial feeding. Significant (P < 0.001) increases in serum ggt and alp activities developed within 24 hours in suckling pups, but not in the colostrum-deprived pups. At 10 and 30 days after birth, serum ggt and alp activities were less than values before suckling in all pups.

Enzyme activities in bitches’ serum remained within the normal range for adult dogs throughout whelping and lactation. Renal ggt and alp activities were substantially greater than hepatic enzyme activities in neonates and adults. Renal tissue from adults contained 3 times greater ggt and 2 times greater alp activities than that from neonates. Hepatic tissue from neonates contained 5 times more ggt activity than did hepatic tissues from clinically normal adults; however, hepatic alp activity was similar in adults and neonates.

Colostrum and milk had substantially higher enzyme activities than did bitches’ serum. Activities of ggt and alp in milk were 100 times and 10 times greater, respectively, than activities in serum through day 10. By day 30, ggt and alp activities in milk were less than before suckling. Enzyme activity was not detected in the milk substitute.

These studies reveal an association between colostrum ingestion by suckling and acute, profound increases in serum ggt and alp in 1- to 3-day-old pups. Although this phenomenon might be useful as an indicator of colostrum ingestion, it precludes the diagnostic use of either enzyme as an indicator of hepatobiliary disease in 3-day-old pups.

Free access
in American Journal of Veterinary Research

SUMMARY

In an effort to characterize the activity of serum γ-glutamyltransferase (ggt) in newborn calves before and after suckling and to explore the usefulness of serum ggt as an indicator of failure of passive transfer in calves, blood samples were collected from the first calves of 48 cows at the time of birth and at 1 day of age. Serum was harvested, and concentrations of IgG and protein and activity of ggt were determined. Morbidity and mortality events were monitored from birth to weaning. Calves suckling colostrum had 10 and 1.3 times greater serum concentrations of IgG and protein, respectively, and a 26 times greater serum activity of ggt, compared with concentrations at birth. Increases in ggt activity and protein concentration were correlated to increases in IgG concentration. Calves classified as having failure of passive transfer (< 800 mg of IgG/dl) had a 9.5 times greater risk of becoming sick prior to weaning, compared with calves determined to have partial failure of passive transfer and clinically normal calves (P= 0.0004). The sensitivity and specificity of a cutoff value of 200 IU of ggt/L of serum for diagnosing failure of passive transfer were 80 and 97%, respectively. The sensitivity and specificity of a cutoff value of 4.2 g of protein/dl of serum for diagnosing failure of passive transfer were 80 and 100%, respectively. The Kappa values for diagnosis of failure of passive transfer, using serum concentrations of IgG vs activity of ggt, IgG vs protein, and ggt vs protein, were 0.72, 0.86, and 0.79, respectively. The value of using ggt activities for diagnosis of hepatic lesions is limited during at least the first week of life in calves that consume adequate amounts of colostrum. The most cost-effective and rapid indicator of passive immune status in this study was determination of serum total protein. Serum activity of ggt also gave reliable indications of passive immune status. Procedures used to determine these values were less expensive and gave results sooner than single radial immunodiffusion for IgG.

Free access
in American Journal of Veterinary Research

Lambs are born with negligible serum IgG concentrations, so neonatal lambs depend on the passive transfer of maternal IgG in colostrum to provide humoral immunity during the neonatal period. 1–6 Failure of the neonatal lambs to obtain and absorb

Full access
in American Journal of Veterinary Research

.3109/08923978809006454 11 Hanel RM , Crawford PC , Hernandez J , et al . Neutrophil function and plasma opsonic capacity in colostrum-fed and colostrum-deprived neonatal kittens . Am J Vet Res 2003 ; 64 : 538 – 543 . 10

Full access
in American Journal of Veterinary Research

sample, a brief clinical examination, which included measurement of rectal temperature and assessment of neonatal stress and asphyxia, was performed on each calf. c One liter of the dam's colostrum was fed to each calf via a nipple bottle after

Full access
in American Journal of Veterinary Research