Search Results

You are looking at 61 - 70 of 1,507 items for :

  • Refine by Access: All Content x
Clear All

Abstract

Objective—To determine whether alterations in myoplasmic calcium regulation can be identified in muscle cell cultures (myotubes) and intact muscle fiber bundles derived from Thoroughbreds affected with recurrent exertional rhabdomyolysis (RER).

Animals—6 related Thoroughbreds with RER and 8 clinically normal (control) Thoroughbred or crossbred horses.

Procedures—Myotube cell cultures were grown from satellite cells obtained from muscle biopsy specimens of RER-affected and control horses. Fura-2 fluorescence was used to measure resting myoplasmic calcium concentration as well as caffeine- and 4-chloro-m-cresol (4-CMC)-induced increases in myoplasmic calcium. In addition, intact intercostal muscle fiber bundles were prepared from both types of horses, and their sensitivities to caffeine- and 4-CMC-induced contractures were determined.

Results—Myotubes of RER-affected and control horses had identical resting myoplasmic calcium concentrations. Myotubes from RER-affected horses had significantly higher myoplasmic calcium concentrations than myotubes from control horses following the addition of ≥ 2mM caffeine; however, there was no difference in their response to 4-CMC (≥ 1mM). Caffeine contracture thresholds for RER and control intact muscle cell bundles (2 vs 10mM, respectively) were significantly different, but 4-CMC contracture thresholds of muscle bundles from RER-affected and control horses (500µM) did not differ.

Conclusions and Clinical Relevance—An increase in caffeine sensitivity of muscle cells derived from a family of related RER-affected horses was detected in vitro by use of cell culture with calcium imaging and by use of fiber bundle contractility techniques. An alteration in muscle cell calcium regulation is a primary factor in the cause of this heritable myopathy. (Am J Vet Res 2002;63:1724–1731)

Full access
in American Journal of Veterinary Research

Objective

To determine, among dogs with urolithiasis, whether dogs that had hyperadrenocorticism would be more likely to have calcium-containing uroliths than would dogs that did not have clinical evidence of hyperadrenocorticism.

Design

Retrospective case-control study.

Animals

20 dogs that had urolithiasis and hyperadrenocorticism and 42 breed-matched dogs that had urolithiasis but did not have clinical evidence of hyperadrenocortiosm.

Procedure

Signalment, urolith composition, results of bacterial culture of urine, and results of adrenal axis tests were recorded. A multivariate logistic regression model was created, including terms for age, sex, and hyperadrenocorticism. The outcome variable was presence or absence of calcium-containing uroliths.

Results

Among dogs with urolithiasis, those that had hyperadrenocorticism were 10 times as likely to have calcium-containing uroliths as were dogs that did not have clinical evidence of hyperadrenocorticism (odds ratio, 10.5; 95% confidence interval, 1.5 to 23.4) Neutered and sexually intact females were less likely to have calcium-containing uroliths than were neutered males (odds ratios, 0.041 [95% confidence interval, 0.0057 to 0.29] and 0.024 [95% confidence interval, 0.0012 to 0.5], respectively).

Clinical Implications

Prompt diagnosis and treatment of hyperadrenocorticism may decrease prevalence of calcium-containing uroliths in dogs. (J Am Vet Med Assoc 1998:212:1889–1891)

Free access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine whether the basis for recurrent exertional rhabdomyolysis (RER) in Thoroughbreds lies in an alteration in the activation and regulation of the myofibrillar contractile apparatus by ionized calcium.

Animals—4 Thoroughbred mares with RER and 4 clinically normal (control) Thoroughbreds.

Procedure—Single chemically-skinned type-I (slowtwitch) and type-II (fast-twitch) muscle fibers were obtained from punch biopsy specimens, mounted to a force transducer, and the tensions that developed in response to a series of calcium concentrations were measured. In addition, myofibril preparations were isolated from muscle biopsy specimens and the maximal myofibrillar ATPase activity, as well as its sensitivity to ionized calcium, were measured.

Results—Equine type-I muscle fibers were more readily activated by calcium than were type-II muscle fibers. However, there was no difference between the type-II fibers of RER-affected and control horses in terms of calcium sensitivity of force production. There was also no difference between muscle myofibril preparations from RER-affected and control horses in calcium sensitivity of myofibrillar ATPase activity.

Conclusion and Clinical Relevance—An alteration in myofibrillar calcium sensitivity is not a basis for pathologic contracture development in muscles from RER-affected horses. Recurrent exertional rhabdomyolysis in Thoroughbreds may represent a novel heritable defect in the regulation of muscle excitation-contraction coupling or myoplasmic calcium concentration. (Am J Vet Res 2001;62:1647–1652)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify dietary factors associated with the increase in occurrence of calcium oxalate (CaOx) uroliths and the decrease in occurrence of magnesium ammonium phosphate (MAP) uroliths in cats.

Design—Case-control study.

Animals—173 cats with CaOx uroliths, 290 cats with MAP uroliths, and 827 cats without any urinary tract diseases.

Procedure—Univariate and multivariate logistic regression were performed.

Results—Cats fed diets low in sodium or potassium or formulated to maximize urine acidity had an increased risk of developing CaOx uroliths but a decreased risk of developing MAP uroliths. Additionally, compared with the lowest contents, diets with the highest moisture or protein contents and with moderate magnesium, phosphorus, or calcium contents were associated with decreased risk of CaOx urolith formation. In contrast, diets with moderate fat or carbohydrate contents were associated with increased risk of CaOx urolith formation. Diets with the highest magnesium, phosphorus, calcium, chloride, or fiber contents and moderate protein content were associated with increased risk of MAP urolith formation. On the other hand, diets with the highest fat content were associated with decreased risk of MAP urolith formation.

Conclusions and Clinical Relevance—Results suggest that diets formulated to contain higher protein, sodium, potassium, moisture, calcium, phosphorus, and magnesium contents and with decreased urine acidifying potential may minimize formation of CaOx uroliths in cats. Diets formulated to contain higher fat content and lower protein and potassium contents and with increased urine acidifying potential may minimize formation of MAP uroliths. (J Am Vet Med Assoc 2001;219:1228–1237)

Full access
in Journal of the American Veterinary Medical Association

Objective

To determine whether a commercially available water hardness test kit could be used to measure total serum calcium concentration and diagnose hypocalcemia in dairy cows.

Design

Prospective study.

Animals

30 dairy cows from 19 commercial herds.

Procedure

Serum calcium concentration was determined using a water hardness test kit and a standard, laboratory-based method. Simple linear regression was used to determine whether there was a linear relationship between results of the 2 methods, and Spearman's rank correlation was used to calculate correlation between measurements. Sensitivity, specificity, and predictive values of using test kit-derived values for diagnosis of hypocalcemia (laboratory value < 8 mg/dl) were calculated.

Results

There was a high correlation and significant linear relationship between results of the 2 methods. Sensitivity, specificity, predictive value of a positive test result, and predictive value of a negative test result were 100, 73, 86, and 100%, respectively. Accuracy was improved by using a test kit-derived calcium concentration of 7 mg/dl as the cut-off for determining hypocalcemia.

Clinical Implications

Results indicate that a commercially available water hardness test kit can be used as a rapid, inexpensive method of estimating serum calcium concentrations and diagnosing hypocalcemia in dairy cattle. However, the test is not practical for cow-side use, because blood samples must be centrifuged to obtain serum for use in the test kit. (J Am Vet Med Assoc 1999;214:826–828)

Free access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To identify dietary factors in commercially available canned foods associated with the development of calcium oxalate (CaOx) uroliths in dogs.

Animals—117 dogs with CaOx uroliths and 174 dogs without urinary tract disease.

Procedure—Case dogs were those that developed CaOx uroliths submitted to the Minnesota Urolith Center for quantitative analysis between 1990 and 1992 while fed a commercially available canned diet. Control dogs were those without urinary tract disease evaluated at the same veterinary hospital just prior to or immediately after each case dog. A content-validated multiple-choice questionnaire was mailed to each owner of case and control dogs with the permission of the primary care veterinarian. Univariate and multivariate logistic regressions for each dietary component were performed to test the hypothesis that a given factor was associated with CaOx urolith formation.

Results—Canned foods with the highest amount of protein, fat, calcium, phosphorus, magnesium, sodium, potassium, chloride, or moisture were associated with a decreased risk of CaOx urolith formation, compared with diets with the lowest amounts. In contrast, canned diets with the highest amount of carbohydrate were associated with an increased risk of CaOx urolith formation.

Conclusions and Clinical Relevance—Feeding canned diets formulated to contain high amounts of protein, fat, calcium, phosphorus, magnesium, sodium, potassium, chloride, and moisture and a low amount of carbohydrate may minimize the risk of CaOx urolith formation in dogs. (Am J Vet Res 2002;63:163–169)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the interaction of season and age on serum calcium, phosphorus, and vitamin D3 concentrations in llamas and alpacas.

Animals—23 clinically normal llamas and 7 alpacas.

Procedures—Animals were assigned to 1 of the 3 following groups on the basis of age at the start of the study: adult (age, ≥ 24 months; n = 8), yearling (> 12 but < 20 months; 5), and neonate (< 6 months; 17). Twelve serum samples were obtained at monthly intervals. Calcium, phosphorus, and vitamin D3 concentrations were measured, and the calcium-to-phosphorus concentration (Ca:P) ratio calculated. Effect of season and age on each of these variables was determined.

Results—Vitamin D3 concentrations varied significantly as a function of season; the highest and lowest concentrations were detected September through October and February through March, respectively. The seasonal decrease in vitamin D3 concentration was significantly greater in neonates and yearlings, compared with adults. Serum phosphorus concentration decreased as a function of age, with the most significant seasonal change detected in the neonate group. The Ca:P ratio in neonates varied between 1.1 and 1.3 except during winter months when it increased to ≥ 2.0.

Conclusions and Clinical Relevance—Mean vitamin D3 concentration varied by > 6 fold in neonatal and yearling llamas and alpacas and > 3 fold in adult animals as a function of season. These results support the hypothesis that seasonal alterations in vitamin D3 concentrations are a key factor in the development of hypophosphatemic rickets in llamas and alpacas. (Am J Vet Res 2001;62:1187–1193)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether an alteration in calcium regulation by skeletal muscle sarcoplasmic reticulum, similar to known defects that cause malignant hyperthermia (MH), could be identified in membrane vesicles isolated from the muscles of Thoroughbreds with recurrent exertional rhabdomyolysis (RER).

Sample Population—Muscle biopsy specimens from 6 Thoroughbreds with RER and 6 healthy (control) horses.

Procedures—RER was diagnosed on the basis of a history of > 3 episodes of exertional rhabdomyolysis confirmed by increases in serum creatine kinase (CK) activity. Skeletal muscle membrane vesicles, prepared by differential centrifugation of muscle tissue homogenates obtained from the horses, were characterized for sarcoplasmic reticulum (SR) activities, including the Ca2+ release rate for the ryanodine receptor-Ca2+ release channel, [3H]ryanodine binding activities, and rate of SR Ca2+-ATPase activity and its activation by Ca2+.

Results—Time course of SR Ca2+-induced Ca2+ release and [3H]ryanodine binding to the ryanodine receptor after incubation with varying concentrations of ryanodine, caffeine, and ionized calcium did not differ between muscle membranes obtained from control and RER horses. Furthermore, the maximal rate of SR Ca2+-ATPase activity and its affinity for Ca2+ did not differ between muscle membranes from control horses and horses with RER.

Conclusions and Clinical Relevance—Despite clinical and physiologic similarities between RER and MH, we concluded that RER in Thoroughbreds does not resemble the SR ryanodine receptor defect responsible for MH and may represent a novel defect in muscle excitation-contraction coupling, calcium regulation, or contractility. (Am J Vet Res 2000;61:242–247)

Full access
in American Journal of Veterinary Research

Summary

Packed cell volume, total plasma protein, serum sodium, potassium, and ionized Ca2+ concentrations, and blood pH were determined at the time of admission and following surgery in 147 horses with acute abdominal crisis. Horses were allotted to 3 categories on the basis of the surgical lesion: (1) nonstrangulating obstruction of the ascending or descending colon (category A, n = 76), (2) strangulating and nonstrangulating infarction of the cecum or ascending colon (category B, n = 37), and (3) strangulating and nonstrangulating infarction of the small intestine (category C, n = 25). Horses with low serum ionized Ca2+ concentration following surgery were given 23% calcium gluconate (100 to 300 ml) IV to effect, and ionized Ca2+ concentration was determined following treatment.

The serum ionized Ca2+ concentrations of horses in categories A, B, and C before and after surgery were lower than our normal laboratory reference range. Prior to surgery, serum ionized Ca2+ concentration measured from horses in category B and C was lower than that in horses in category A. There was no difference in ionized Ca2+ concentration in serum samples obtained before surgery in horses from category B and C, and in serum samples obtained following surgery. There was a decrease in ionized Ca2+ concentration during surgery in horses in category A. There was no change between preoperative and postoperative ionized Ca2+ concentration in the samples obtained from horses in category B and C. After calcium gluconate administration, all horses with low serum ionized Ca2+ after surgery had concentrations within our normal range.

Measurement of serum ionized Ca2+ in horses with an acute abdominal crisis is recommended. If concentrations are low, calcium gluconate diluted in fluids and administered iv to effect appears to provide an effective method of treatment.

Free access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate the effect of dietary supplementation with sodium chloride (NaCl) on urinary calcium excretion, urine calcium concentration, and urinary relative supersaturation (RSS) with calcium oxalate (CaOx).

Animals—6 adult female healthy Beagles.

Procedure—By use of a crossover study design, a canned diet designed to decrease CaOx urolith recurrence with and without supplemental NaCl (ie, 1.2% and 0.24% sodium on a dry-matter basis, respectively) was fed to dogs for 6 weeks. Every 14 days, 24- hour urine samples were collected. Concentrations of lithogenic substances and urine pH were used to calculate values of urinary RSS with CaOx.

Results—When dogs consumed a diet supplemented with NaCl, 24-hour urine volume and 24-hour urine calcium excretion increased. Dietary supplementation with NaCl was not associated with a change in urine calcium concentration. However, urine oxalate acid concentrations and values of urinary RSS with CaOx were significantly lower after feeding the NaCl-supplemented diet for 28 days.

Conclusions and Clinical Relevance—Dietary supplementation with NaCl in a urolith-prevention diet decreased the propensity for CaOx crystallization in the urine of healthy adult Beagles. However, until long-term studies evaluating the efficacy and safety of dietary supplementation with NaCl in dogs with CaOx urolithiasis are preformed, we suggest that dietary supplementation with NaCl be used cautiously. (Am J Vet Res 2005;66:319–324)

Full access
in American Journal of Veterinary Research