Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Alan J. Nixon x
- Musculoskeletal System x
- Refine by Access: All Content x
Abstract
Objective—To assess the potential of adipose-derived nucleated cell (ADNC) fractions to improve tendon repair in horses with collagenase-induced tendinitis.
Animals—8 horses.
Procedures—Collagenase was used to induce tendinitis in the superficial digital flexor tendon of 1 forelimb in each horse. Four horses were treated by injection of autogenous ADNC fractions, and 4 control horses were injected with PBS solution. Healing was compared by weekly ultrasonographic evaluation. Horses were euthanatized at 6 weeks. Gross and histologic evaluation of tendon structure, fiber alignment, and collagen typing were used to define tendon architecture. Biochemical and molecular analyses of collagen, DNA, and proteoglycan and gene expression of collagen type I and type III, decorin, cartilage oligomeric matrix protein (COMP), and insulin-like growth factor-I were performed.
Results—Ultrasonography revealed no difference in rate or quality of repair between groups. Histologic evaluation revealed a significant improvement in tendon fiber architecture; reductions in vascularity, inflammatory cell infiltrate, and collagen type III formation; and improvements in tendon fiber density and alignment in ADNC-treated tendons. Repair sites did not differ in DNA, proteoglycan, or total collagen content. Gene expression of collagen type I and type III in treated and control tendons were similar. Gene expression of COMP was significantly increased in ADNC-injected tendons.
Conclusions and Clinical Relevance—ADNC injection improved tendon organization in treated tendons. Although biochemical and molecular differences were less profound, tendons appeared architecturally improved after ADNC injection, which was corroborated by improved tendon COMP expression. Use of ADNC in horses with tendinitis appears warranted.
Abstract
Objective—To evaluate the effects of recombinant human platelet–derived growth factor-BB (rhPDGF-BB) on the metabolic function and morphologic features of equine superficial digital flexor tendon (SDFT) in explant culture.
Animals—6 euthanized horses (2 to 5 years old).
Methods—Forelimb SDFT explants were cultured for 6 days as untreated control specimens or treated with rhPDGF-BB (1, 10, 50, or 100 ng/mL of medium). Treatment effects on explant gene expression were evaluated via real-time PCR analysis of collagen type I, collagen type III, PDGF-A, and PDGF-B mRNA. Explants were assayed for total collagen, glycosaminoglycan, and DNA content; histologic changes were assessed via H&E staining and immunohistochemical localization of collagen types I and III.
Results—No morphologic or proliferative changes were detected in tendon explant sections. After high-dose rhPDGF-BB treatment, gene expression of collagen types I and III was increased and decreased, respectively. Expression of PDGF-A and PDGF-B mRNA was significantly increased at 24 hours, but later decreased to have few or negative autoinductive effects. Although PDGF gene expression waned after 48 hours of culture, collagen type I gene expression was significantly increased at 48 hours and reached peak value on day 6. Glycosaminoglycan and DNA content of explants were unchanged with rhPDGF-BB treatment.
Conclusions and Clinical Relevance—Results suggest that rhPDGF-BB use may be of benefit in the repair of equine tendon, particularly through induction of collagen type I mRNA. Positive autoinductive effects of PDGF-BB in equine SDFT explants were detected early following culture medium supplementation, but these diminished with time.
Abstract
Objective—To characterize the nucleotide sequence of equine platelet-derived growth factor (PDGF)-A and -B and analyze temporal expression of these genes in equine tendon after induced tendinitis injury.
Animals—18 mature horses.
Procedures—Genes for equine PDGF-A and -B were reverse transcribed and sequenced from synovial tissue mRNA obtained from a 3-year-old horse. Collagenase-induced lesions were created in the tensile region of the superficial digital flexor tendon in 14 horses; 3 horses served as uninjured control animals. Tendons were harvested and total RNA was isolated from experimental horses 1, 2, 4, 8, and 24 weeks after collagenase injection. Temporal gene expression for PDGF-A and -B was determined by use of quantitative PCR analysis.
Results—Equine PDGF-A shared 83.8% sequence and 87.5% peptide homology with human PDGF-A, with a discrepancy of 70 bp from the human sequence. Equine PDGF-B was similar in length to the human gene, sharing 90.3% and 91.7% nucleotide and peptide identity, respectively. Expression of PDGF-A mRNA in collagenase-induced tendinitis lesions was unchanged, compared with expression for normal control tendon, and remained steady throughout the 24-week study. Expression of PDGF-B mRNA decreased over time, and the expression at 24 weeks was significantly reduced, compared with expression in normal and acutely injured tendon.
Conclusions and Clinical Relevance—Injured tendon mounts a minimal constitutive PDGF-A or -B mRNA response. Serial exogenous treatment with either PDGF isoform within the first 2 to 4 weeks after tendon injury may bolster the meager PDGF paracrine-autocrine intrinsic response to injury.