Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Ursula M. Dietrich x
  • Ophthalmology x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate the effects of topical antifungal drugs and delivery vehicles on the morphology and proliferation rate of cultured equine keratocytes.

Study Population—16 corneas obtained from 8 apparently ophthalmologically normal horses < 0.5 hours after euthanasia for reasons unrelated to the study.

Procedures—Primary cultures of equine keratocytes were obtained from corneal stroma and were exposed to several concentrations of 3 commonly used, topically applied antifungals: natamycin, itraconazole, and miconazole. In addition, effects of drug delivery vehicles DMSO, benzalkonium chloride, and carboxymethylcellulose and a combination vehicle composed of polyethylene glycol, methylparaben, and propylparaben were also evaluated. Morphological changes and cellular proliferation were assessed 24, 48, and 72 hours after application.

Results—At the highest concentrations tested, all antifungals caused marked cellular morphological changes and inhibited proliferation. At low concentrations, natamycin and miconazole induced rounding, shrinking, and detaching of the cells with inhibition of cellular proliferation. Natamycin caused the most severe cellular changes. Itraconazole, at the low concentrations, caused minimal morphological changes and had a minimal effect on proliferation. All vehicles tested had significantly less effects on cellular morphology and proliferation when compared with the antifungals, except for the combination vehicle, which caused severe morphological changes and inhibited proliferation, even at low concentrations. The DMSO had minimal effects on cellular morphology and proliferation, even at high concentrations.

Conclusions and Clinical Relevance—Itraconazole had significantly less cytotoxic effects on equine keratocytes in culture than did natamycin or miconazole. Natamycin had severe cytotoxic effects in vitro.

Full access
in American Journal of Veterinary Research