Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Tracy L. Drazenovich x
  • Pharmacology x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To determine the pharmacokinetics and adverse effects of maropitant citrate after IV and SC administration to New Zealand White rabbits (Oryctolagus cuniculus).

ANIMALS

11 sexually intact (3 males and 8 females) adult rabbits.

PROCEDURES

Each rabbit received maropitant citrate (1 mg/kg) IV or SC. Blood samples were collected at 9 (SC) or 10 (IV) time points over 48 hours. After a 2-week washout period, rabbits received maropitant by the alternate administration route. Pharmacokinetic parameters were calculated. Body weight, food and water consumption, injection site, mentation, and urine and fecal output were monitored.

RESULTS

Mean ± SD maximum concentration after SC administration was 14.4 ± 10.9 ng/mL and was detected at 1.25 ± 0.89 hours. Terminal half-life after IV and SC administration was 10.4 ± 1.6 hours and 13.1 ± 2.44 hours, respectively. Bioavailability after SC administration was 58.9 ± 13.3%. Plasma concentration at 24 hours was 2.87 ± 1.69 ng/mL after IV administration and 3.4 ± 1.2 ng/mL after SC administration. Four rabbits developed local dermal reactions at the injection site after SC injection. Increased fecal production was detected on the day of treatment and 1 day after treatment.

CONCLUSIONS AND CLINICAL RELEVANCE

Plasma concentrations of rabbits 24 hours after SC and IV administration of maropitant citrate (1 mg/kg) were similar to those of dogs at 24 hours. Reactions at the SC injection site were the most common adverse effect detected. Increased fecal output may suggest an effect on gastrointestinal motility. Additional pharmacodynamic and multidose studies are needed.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To identify an oral dose of grapiprant for red-tailed hawks (RTHAs; Buteo jamaicensis) that would achieve a plasma concentration > 164 ng/mL, which is considered therapeutic for dogs with osteoarthritis.

ANIMALS

6 healthy adult RTHAs.

PROCEDURES

A preliminary study, in which grapiprant (4 mg/kg [n = 2], 11 mg/kg [2], or 45 mg/kg [2]) was delivered into the crop of RTHAs from which food had been withheld for 24 hours, was performed to obtained pharmacokinetic data for use with modeling software to simulate results for grapiprant doses of 20, 25, 30, 35, and 40 mg/kg. Simulation results directed our selection of the grapiprant dose administered to the RTHAs in a single-dose study. Plasma grapiprant concentration, body weight, and gastrointestinal signs of RTHAs were monitored.

RESULTS

On the basis of results from the preliminary study and simulations, a grapiprant dose of 30 mg/kg was used in the single-dose study. The geometric mean maximum observed plasma concentration of grapiprant was 3,184 ng/mL, time to maximum plasma grapiprant concentration was 2.0 hours, and the harmonic mean terminal half-life was 17.1 hours. No substantial adverse effects were observed.

CONCLUSIONS AND CLINICAL RELEVANCE

Although the single dose of grapiprant (30 mg/kg) delivered into the crop achieved plasma concentrations > 164 ng/mL in the RTHAs, it was unknown whether this concentration would be therapeutic for birds. Further research that incorporates multidose assessments, safety monitoring, and pharmacodynamic data collection is warranted on the use of grapiprant in RTHAs from which food was withheld versus not withheld.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine the pharmacokinetics of amantadine after oral administration of single and multiple doses to orange-winged Amazon parrots (Amazona amazonica).

ANIMALS

12 adult orange-winged Amazon parrots (6 males and 6 females).

PROCEDURES

A single dose of amantadine was orally administered to 6 birds at 5 mg/kg (n = 2), 10 mg/kg (2), and 20 mg/kg (2) in a preliminary trial. On the basis of the results, a single dose of amantadine (10 mg/kg, PO) was administered to 6 other birds. Two months later, multiple doses of amantadine (5 mg/kg, PO, q 24 h for 7 days) were administered to 8 birds. Heart rate, respiratory rate, behavior, and urofeces were monitored. Plasma concentrations of amantadine were measured via tandem liquid chromatography–mass spectrometry. Pharmacokinetic parameter estimates were determined via noncompartmental analysis.

RESULTS

Mean ± SD maximum plasma concentration, time to maximum plasma concentration, half-life, and area under the concentration-versus-time curve from the last dose to infinity were 1,174 ± 186 ng/mL, 3.8 ± 1.8 hours, 23.2 ± 2.9 hours, and 38.6 ± 7.4 μg·h/mL, respectively, after a single dose and 1,185 ± 270 ng/mL, 3.0 ± 2.4 hours, 21.5 ± 5.3 hours, and 26.3 ± 5.7 μg·h/mL, respectively, at steady state after multiple doses. No adverse effects were observed.

CONCLUSIONS AND CLINICAL RELEVANCE

Once-daily oral administration of amantadine at 5 mg/kg to orange-winged Amazon parrots maintained plasma concentrations above those considered to be therapeutic in dogs. Further studies evaluating safety and efficacy of amantadine in orange-winged Amazon parrots are warranted.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To determine the pharmacokinetics and adverse effects at the injection site of ceftiofur crystalline-free acid (CCFA) following IM administration of 1 dose to red-tailed hawks (Buteo jamaicensis).

ANIMALS 7 adult nonreleasable healthy red-tailed hawks.

PROCEDURES In a randomized crossover study, CCFA (10 or 20 mg/kg) was administered IM to each hawk and blood samples were obtained. After a 2-month washout period, administration was repeated with the opposite dose. Muscle biopsy specimens were collected from the injection site 10 days after each sample collection period. Pharmacokinetic data were calculated. Minimum inhibitory concentrations of ceftiofur for various bacterial isolates were assessed.

RESULTS Mean peak plasma concentrations of ceftiofur-free acid equivalent were 6.8 and 15.1 μg/mL for the 10 and 20 mg/kg doses, respectively. Mean times to maximum plasma concentration were 6.4 and 6.7 hours, and mean terminal half-lives were 29 and 50 hours, respectively. Little to no muscle inflammation was identified. On the basis of a target MIC of 1 μg/mL and target plasma ceftiofur concentration of 4 μg/mL, dose administration frequencies for infections with gram-negative and gram-positive organisms were estimated as every 36 and 45 hours for the 10 mg/kg dose and every 96 and 120 hours for the 20 mg/kg dose, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE Study results suggested that CCFA could be administered IM to red-tailed hawks at 10 or 20 mg/kg to treat infections with ceftiofur-susceptible bacteria. Administration resulted in little to no inflammation at the injection site. Additional studies are needed to evaluate effects of repeated CCFA administration.

Full access
in American Journal of Veterinary Research