Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Thomas M. Jenei x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare heat generation during insertion, pullout strength, and associated microdamage between a self-tapping positive profile transfixation pin (STTP) and nontapping positive profile transfixation pin (NTTP).

Sample Population—30 pairs of third metacarpal bones (MC3s) from adult equine cadavers.

Procedures—One MC3 of each pair was assigned to the STTP group; the other was assigned to the NTTP group. The assigned pin was inserted into the diaphysis in a lateral to medial direction. Bone temperature increase during pilot-hole drilling and pin insertion was recorded at 1 mm from the final thread position with wire thermocouples at cis and trans cortices. Resistance to axial extraction before and after cyclic loading was measured in a material testing device, and microstructural damage caused by transfixation pin insertion was assessed with scanning electron microscopy.

Results—The STTP group developed a significant increase in bone temperature, compared with the NTTP group. No significant difference was found between the mean maximal pullout strength of the STTP and the NTTP in both non–cyclic-loaded and cyclic-loaded groups. Microdamage to the bone-pin interface was lower when the STTP versus the NTTP was used, but more bone debris was apparent after inserting the STTP.

Conclusion and Clinical Relevance—Because of the significant increase in temperature generation and debris accumulation despite similar pullout strengths and lesser microfracture formation, the STTP likely poses a higher risk of bone necrosis and potential loosening than the NTTP. This might be corrected by redesign of the tapping aspect of the STTP.

Full access
in American Journal of Veterinary Research