Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Steve C. Haskins x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association

Abstract

Objective—To describe the effects of increasing the extracellular fluid (ECF) volume by approximately 20% on acid-base changes and electrolyte concentrations in anesthetized rats.

Animals—18 adult male Sprague-Dawley rats.

Procedures—Rats were assigned to a control group (n = 6 rats) and a treatment group (12). All rats were anesthetized, and instrumentation and bilateral renal pedicle ligation were performed. The treatment group was infused IV with sterile water throughout a 30-minute period. Acid-base variables and concentrations of electrolytes, lactate, albumin, phosphorus, and hemoglobin were measured before (baseline) and 30 and 60 minutes after onset of infusion. Anion gap, strong ion difference, strong ion gap, and contributions of sodium, chloride, albumin, phosphorus, and lactate concentrations to base excess were calculated at each time point.

Results—Infusion of sterile water led to an increase in ECF volume of approximately 18%. This had no effect on acid-base balance, compared with that in control rats. Infusion of sterile water caused a significant decrease in sodium, chloride, ionized calcium, lactate, and albumin concentrations, compared with concentrations in the control group. Anion gap and calculated effects of sodium, chloride, albumin, and lactate concentrations on base excess at 60 minutes differed significantly between infused and control rats.

Conclusions and Clinical Relevance—Infusion of sterile water did not cause clinically relevant dilutional acidosis. The acidotic impact of water administration was offset by generation of new bicarbonate via carbonic acid equilibration and intracellular buffering in combination with the alkalotic effects of decreases in albumin, phosphorus, and lactate concentrations.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effect of dilution of blood samples with sodium heparin on blood gas, electrolyte, and lactate measurements in dogs.

Sample Population—Venous blood samples collected from 6 adult dogs of various breeds.

Procedure—Syringes were prepared with anticoagulant via 1 of 4 techniques, and the residual volume of liquid heparin in each type of prepared syringe was determined. Blood gas values and other selected clinicopathologic variables were measured in whole blood samples after collection (baseline) and after aliquots of the samples were diluted with heparin via 1 of the 4 manual syringe techniques. By use of a tonometer, whole blood samples were adjusted to 1 of 3 oxygen concentrations (40, 100, or 600 mm Hg) and the PO2 values were measured at baseline and subsequent to the 4 heparin dilutions.

Results—The 4 syringe techniques resulted in 3.9%, 9.4%, 18.8%, and 34.1% dilutions of a 1-mL blood sample. Compared with baseline values, dilution of blood samples with liquid heparin significantly changed the measured values of PCO2, PO2, and base deficit and concentrations of electrolytes and lactate. Of the variables assessed, measurement of ionized calcium concentration in blood was most affected by heparin dilution.

Conclusions and Clinical Relevance—These findings in dogs indicate that dilution of blood samples with heparin can be a source of preanalytical error in blood gas, electrolyte, and lactate measurements. Limiting dilution of blood samples with heparin to < 4% by volume via an evacuation technique of syringe heparinization is recommended. (Am J Vet Res 2005;66:656–660)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effect of 2 hydroxyethyl starch (HES) preparations (ie, HES solution with a molecular weight of 600 kd and a degree of substitution of 0.7 [HES 600/0.7] and a calcium-containing polyionic HES solution with a molecular weight of 670 kd and a degree of substitution of 0.75 [HES 670/0.75]) on canine platelet function.

Sample Population—Blood samples from 10 healthy adult dogs.

Procedures—Dilution of citrated whole blood was performed with saline (0.9% NaCl) solution, HES 600/0.7, and HES 670/0.75 at ratios of 1:9 (ie, 1 part saline solution or colloid to 9 parts whole blood) and 1:3. Measurements of time to platelet plug formation in a capillary tube (ie, closure time) were made by use of a bench-top platelet function analyzer with collagen and ADP platelet agonists.

Results—Mean baseline closure time was 68.0 ± 15.3 seconds. A 1:3 dilution of whole blood with saline solution, HES 600/0.7, and HES 670/0.75 resulted in mean closure times of 85.8 ± 15.7 seconds, 100.6 ± 18.6 seconds, and 101.6 ± 16.2 seconds, respectively. Closure time following 1:3 dilution of whole blood with saline solution was significantly different from baseline and from 1:9 dilution with saline solution. Closure time following 1:3 dilution of whole blood with HES 670/0.75 was significantly different from baseline, 1:3 and 1:9 dilutions with saline solution, and 1:9 dilutions with HES 600/0.7 or HES 670/0.75.

Conclusions and Clinical Relevance—Saline solution, HES 600/0.7, and HES 670/0.75 affect canine platelet function by prolonging closure times; HES solutions prolonged closure time to a greater extent than saline solution.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether peripheral venous pressure (PVP) was correlated with central venous pressure (CVP) when measured by use of different catheter sizes, catheterization sites, and body positions in awake dogs and cats.

Animals—36 dogs and 10 cats.

Procedures—Dogs and cats with functional jugular and peripheral venous catheters were enrolled in the study. Peripheral venous catheters (18 to 24 gauge) were placed in a cephalic, lateral saphenous, or medial saphenous vein. Central venous catheters (5.5 to 8.5 F) were placed in the jugular vein and advanced into the cranial vena cava. Catheters were connected to pressure transducers and a blood pressure monitor capable of displaying 2 simultaneous pressure tracings. For each animal, the mean of 5 paired measurements of PVP and CVP was calculated. The relationship between PVP and CVP when measured by use of different catheter sizes, catheterization sites, and body positions was determined.

Results—Mean ± SD PVP was 5.7 ± 5.8 mm Hg higher than CVP in dogs and 6.0 ± 6.9 mm Hg higher than CVP in cats. However, results of multiple regression analysis did not indicate a significant correlation between PVP and CVP, regardless of catheter size, catheter position, or body position. The relationship was weak in both dogs and cats.

Conclusions and Clinical Relevance—The PVP was poorly correlated with CVP when different catheter sizes, catheterization sites, and patient positions were evaluated. Peripheral venous pressure should not be used to approximate CVP in awake dogs and cats.

Full access
in American Journal of Veterinary Research

Summary

Cardiopulmonary effects of halothane administration were studied in hypovolemic dogs. Baseline cardiopulmonary data were recorded from conscious dogs after instrumentation. Hypovolemia was induced by withdrawal of blood from dogs until mean arterial pressure of 60 mm of Hg was achieved. Blood pressure was maintained at 60 mm of Hg for 1 hour, by further removal or replacement of blood. Halothane was delivered by face mask, dogs were intubated, then halothane end-tidal concentration of 1.13 ± 0.02% was maintained, and cardiopulmonary effects were measured 3, 15, 30, and 60 minutes later. After blood withdrawal and prior to halothane administration, systemic vascular resistance index, oxygen extraction, and base deficit increased. Compared with baseline values, these variables were decreased: mean arterial pressure, mean pulmonary arterial pressure, pulmonary arterial occlusion pressure, cardiac index, oxygen delivery index, oxygen consumption index, mixed venous oxygen tension, mixed venous oxygen content, venous admixture, arterial bicarbonate concentration, and mixed venous pH. At all times after intubation, arterial and venous oxygen tensions and mixed venous carbon dioxide tensions were increased. Three minutes after intubation, base deficit and mixed venous carbon dioxide tension increased, and mean arterial pressure and arterial and venous pH decreased, compared with values measured immediately prior to halothane administration. Fifteen minutes after intubation, systemic vascular resistance index decreased and, at 15 and 30 minutes, mean arterial pressure and arterial and venous pH remained decreased. At 60 minutes, mean pulmonary arterial pressure and pulmonary arterial occlusion pressure were increased and mixed venous pH was decreased, compared with values measured before halothane administration. Results of this study indicated that induction of anesthesia with halothane and maintenance at an end-tidal halothane concentration of 1.13% induced significant changes in blood pressure, with minimal effects on cardiac output and pulmonary function, when administered to hypovolemic dogs.

Free access
in American Journal of Veterinary Research

Summary

Cardiopulmonary effects of propofol were studied in hypovolemic dogs from completion of, until 1 hour after administration. Hypovolemia was induced by withdrawal of blood from dogs until mean arterial pressure of 60 mm of Hg was achieved. After stabilization at this pressure for 1 hour, 6 mg of propofol/kg of body weight was administered iv to 7 dogs, and cardiopulmonary effects were measured. After blood withdrawal and prior to propofol administration, oxygen utilization ratio increased, whereas mean arterial pressure, mean pulmonary arterial pressure, central venous pressure, pulmonary capillary wedge pressure, cardiac index, oxygen delivery, mixed venous oxygen tension, and mixed venous oxygen content decreased from baseline. Three minutes after propofol administration, mean pulmonary arterial pressure, pulmonary vascular resistance, oxygen utilization ratio, venous admixture, and arterial and mixed venous carbon dioxide tensions increased, whereas mean arterial pressure, arterial oxygen tension, mixed venous oxygen content, arterial and mixed venous pH decreased from values measured prior to propofol administration. Fifteen minutes after propofol administration, mixed venous carbon dioxide tension was still increased; however by 30 minutes after propofol administration, all measurements had returned to values similar to those measured prior to propofol administration.

Free access
in American Journal of Veterinary Research

Summary

Cardiopulmonary effects of etomidate administration were studied in hypovolemic dogs. Baseline cardiopulmonary data were recorded from conscious dogs after instrumentation. Hypovolemia was induced by withdrawal of blood from dogs until mean arterial pressure of 60 mm of Hg was achieved. Blood pressure was maintained at 60 mm of Hg for 1 hour, by further removal or replacement of blood. One milligram of etomidate/kg of body weight was then administered iv to 7 dogs, and the cardiopulmonary effects were measured 3, 15, 30, and 60 minutes later. After blood withdrawal and prior to etomidate administration, heart rate, arterial oxygen tension, and oxygen utilization ratio increased. Compared with baseline values, the following variables were decreased: mean arterial pressure, mean pulmonary arterial pressure, central venous pressure, pulmonary wedge pressure, cardiac index, oxygen delivery, mixed venous oxygen tension, mixed venous oxygen content, and arterial carbon dioxide tension. Three minutes after etomidate administration, central venous pressure, mixed venous and arterial carbon dioxide tension, and venous admixture increased, and heart rate, arterial and venous pH, and arterial oxygen tension decreased, compared with values measured immediately prior to etomidate administration. Fifteen minutes after etomidate injection, arterial pH and heart rate remained decreased. At 30 minutes, only heart rate was decreased, and at 60 minutes, mean arterial pressure was increased, compared with values measured before etomidate administration. Results of this study indicate that etomidate induces minimal changes in cardiopulmonary function when administered to hypovolemic dogs.

Free access
in American Journal of Veterinary Research