Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Stephanie J. Valberg x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To assess changes in muscle glycogen (MG) and triglyceride (MT) concentrations in aerobically conditioned sled dogs during prolonged exercise.

Animals—54 Alaskan sled dogs fed a high-fat diet.

Procedures—48 dogs ran 140-km distances on 4 consecutive days (cumulative distance, up to 560 km); 6 dogs remained as nonexercising control animals. Muscle biopsies were performed immediately after running 140, 420, or 560 km (6 dogs each) and subsequently after feeding and 7 hours of rest. Single muscle biopsies were performed during recovery at 28 hours in 7 dogs that completed 560 km and at 50 and 98 hours in 7 and 6 dogs that completed 510 km, respectively. Tissue samples were analyzed for MG and MT concentrations.

Results—In control dogs, mean ± SD MG and MT concentrations were 375 ± 37 mmol/kg of dry weight (kgDW) and 25.9 ± 10.3 mmol/kgDW, respectively. Compared with control values, MG concentration was lower after dogs completed 140 and 420 km (137 ± 36 mmol/kgDW and 203 ± 30 mmol/kgDW, respectively); MT concentration was lower after dogs completed 140, 420, and 560 km (7.4 ± 5.4 mmol/kgDW; 9.6 ± 6.9 mmol/kgDW, and 6.3 ± 4.9 mmol/kgDW, respectively). Depletion rates during the first run exceeded rates during the final run. Replenishment rates during recovery periods were not different, regardless of distance; only MG concentration at 50 hours was significantly greater than the control value.

Conclusions and Clinical Relevance—Concentration of MG progressively increased in sled dogs undergoing prolonged exercise as a result of attenuated depletion.

Full access
in American Journal of Veterinary Research


Objective—To compare effects of corn oil or a 7-carbon fat (triheptanoin) on acylcarnitine, lipid, and carbohydrate metabolism in plasma or muscle of exercising horses.

Animals—8 Thoroughbred geldings.

Procedures—Horses received isocaloric diets containing 650 mL of oil (triheptanoin or corn oil)/d for 18 or 25 days in a crossover design with a 26-day washout period. On day 17 or 24 of each feeding period, the respective oil (217 mL) was nasogastrically administered; 120 minutes later, horses performed a 90-minute submaximal exercise test (SET). Blood and muscle samples were obtained before oil administration and immediately before (blood only), during (blood only), immediately after, and 24 hours after SETs.

Results—Compared with values before oil administration, triheptanoin administration increased plasma insulin and C7:0-, C5:0- and C3:0-acylcarnitine concentrations, whereas corn oil administration increased plasma NEFA concentrations. During SETs, plasma C7:0-, C5:0-, and C3:0-acylcarnitine concentrations were higher when triheptanoin, rather than corn oil, was administered to horses. Plasma glucose, NEFA, and C2:0-, C18:1-, and C18:2-acylcarnitine concentrations increased during SETs similarly for both oils. Respiratory quotient and muscle lactate, citrate, malate, glycogen, and ATP concentrations changed similarly from before to after SETs for both oils. Compared with muscle concentrations immediately after SETs, those for glucose-6-phosphate and citrate 24 hours after SETs were lower and for glycogen were similar to values before SETs.

Conclusions and Clinical Relevance—Fatigue was not associated with depletion of citric acid cycle intermediates for either oil. Triheptanoin induced a significantly higher insulin secretion and did not appear to enhance muscle glycogen repletion.

Full access
in American Journal of Veterinary Research