Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Steeve Giguère x
  • Cardiovascular System x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare cardiac output (CO) measured by use of the partial carbon dioxide rebreathing method (NICO) or lithium dilution method (LiDCO) in anesthetized foals.

Sample Population—Data reported in 2 other studies for 18 neonatal foals that weighed 32 to 61 kg.

Procedures—Foals were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, end-tidal isoflurane and carbon dioxide concentrations, and CO. Various COs were achieved by administration of dobutamine, norepinephrine, vasopressin, phenylephrine, and isoflurane to allow comparisons between LiDCO and NICO methods. Measurements were obtained in duplicate or triplicate. We allowed 2 minutes between measurements for LiDCO and 3 minutes for NICO after achieving a stable hemodynamic plane for at least 10 to 15 minutes at each CO.

Results—217 comparisons were made. Correlation (r = 0.77) was good between the 2 methods for all determinations. Mean ± SD measurements of cardiac index for all comparisons with the LiDCO and NICO methods were 138 ± 62 mL/kg/min (range, 40 to 381 mL/kg/min) and 154 ± 55 mL/kg/min (range, 54 to 358 mL/kg/min), respectively. Mean difference (bias) between LiDCO and NICO measurements was −17.3 mL/kg/min with a precision (1.96 × SD) of 114 mL/kg/min (range, −131.3 to 96.7). Mean of the differences of LiDCO and NICO measurements was 4.37 + (0.87 × NICO value).

Conclusions and Clinical Relevance—The NICO method is a viable, noninvasive method for determination of CO in neonatal foals with normal respiratory function. It compares well with the more invasive LiDCO method.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effects of dobutamine, norepinephrine, and vasopressin on cardiovascular function and gastric mucosal perfusion in anesthetized foals during isoflurane-induced hypotension.

Animals—6 foals that were 1 to 5 days of age.

Procedures—6 foals received 3 vasoactive drugs with at least 24 hours between treatments. Treatments consisted of dobutamine (4 and 8 μg/kg/min), norepinephrine (0.3 and 1.0 μg/kg/min), and vasopressin (0.3 and 1.0 mU/kg/min) administered IV. Foals were maintained at a steady hypotensive state induced by a deep level of isoflurane anesthesia for 30 minutes, and baseline cardiorespiratory variables were recorded. Vasoactive drugs were administered at the low infusion rate for 15 minutes, and cardiorespiratory variables were recorded. Drugs were then administered at the high infusion rate for 15 minutes, and cardiorespiratory variables were recorded a third time. Gastric mucosal perfusion was measured by tonometry at the same time points.

Results—Dobutamine and norepinephrine administration improved cardiac index. Vascular resistance was increased by norepinephrine and vasopressin administration but decreased by dobutamine at the high infusion rate. Blood pressure was increased by all treatments but was significantly higher during the high infusion rate of norepinephrine. Oxygen delivery was significantly increased by norepinephrine and dobutamine administration; O2 consumption decreased with dobutamine. The O2 extraction ratio was decreased following norepinephrine and dobutamine treatments. The gastric to arterial CO2gap was significantly increased during administration of vasopressin at the high infusion rate.

Conclusion and Clinical Relevance—Norepinephrine and dobutamine are better alternatives than vasopressin for restoring cardiovascular function and maintaining splanchnic circulation during isofluraneinduced hypotension in neonatal foals.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare cardiac output (CO) measured by lithium arterial pressure waveform analysis (PULSECO) and CO measured by transpulmonary pulse contour analysis (PICCO) in anesthetized foals, with CO measured by use of lithium dilution (LIDCO) considered the criterion-referenced standard.

Sample Population—6 neonatal (1- to 4-day-old) foals that weighed 38 to 45 kg.

Procedures—Foals were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, and CO. The CO was measured by use of PULSECO, PICCO, and LIDCO techniques. Measurements were converted to specific CO (sCO) values for statistical analysis. Measurements were obtained during low, intermediate, and high CO states.

Results—sCO ranged from 75.5 to 310 mL/kg/min. Mean ± SD PICCO bias varied significantly among CO states and was −51.9 ± 23.1 mL/kg/min, 20.0 ± 19.5 mL/kg/min, and 87.2 ± 19.5 mL/kg/min at low, intermediate, and high CO states, respectively. Mean PULSECO bias (11.0 ± 37.5 mL/kg/min) was significantly lower than that of PICCO and did not vary among CO states. Concordance correlation coefficient between LIDCO and PULSECO was significantly greater than that between LIDCO and PICCO. The proportion of observations with a relative bias < ± 30% was significantly lower with the PULSECO method than with the PICCO method.

Conclusions and Clinical Relevance—Values for the PULSECO method were more reproducible and agreed better with values for the LIDCO method than did values for the PICCO method and were able to more accurately monitor changes in CO in anesthetized newborn foals.

Full access
in American Journal of Veterinary Research