Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Robert Gerritsen x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare 2 methods for estimation of glomerular filtration rate (GFR), study the effects of age and body size on GFR estimates, and provide a reference range for estimated GFR in clinically normal cats.

Animals—57 cats.

Procedures—In each cat, GFR was estimated via plasma clearance of iohexol and creatinine. Results of a 1-compartmental model (CL1comp) were calibrated to a trapezoidal method estimate (CLtrap) by use of a correction formula applicable to dogs or humans and standardized to body weight; for iohexol clearance, data were also standardized to extracellular fluid volume (ECFV). For all 57 cats, method comparison was performed via agreement analysis. Reference ranges for GFR derived by the different methods were established by use of data from a subset of 51 cats after exclusion of 6 cats that were azotemic, Birman, or both.

Results—In 57 cats, mean CLtrap of creatinine was 0.29 mL/min/kg (13%) higher than CLtrap of iohexol. In 51 nonazotemic cats, mean CLtrap was 2.26 mL/min/kg for iohexol (reference range, 1.02 to 3.50 mL/min/kg) and 2.55 mL/min/kg for creatinine (reference range, 1.27 to 3.83 mL/min/kg). Values of GFR/kg or GFR standardized to liters of ECFV did not decrease with increasing age. A negative linear relationship was detected between body weight and estimated GFR/kg or GFR standardized to liters of ECFV.

Conclusions and Clinical Relevance—Reference ranges for estimated GFR via plasma clearance of iohexol and creatinine should facilitate early detection of impaired renal function in cats, although body weight should be taken into account.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To develop a formula for correcting slope-intercept plasma iohexol clearance in cats and to compare clearance of total iohexol (TIox), endo-iohexol (EnIox), and exo-iohexol (ExIox).

Animals—20 client-owned, healthy adult and geriatric cats.

Procedures—Plasma clearance of TIox was determined via multisample and slope-intercept methods. A multisample method was used to determine clearance for EnIox and ExIox. A second-order polynomial correction factor was derived by performing regression analysis of the multisample data with the slope-intercept data and forcing the regression line though the origin. Clearance corrected by use of the derived formula was compared with clearance corrected by use of Brochner-Mortensen human and Heiene canine formulae. Statistical testing was applied, and Bland-Altman plots were created to assess the degree of agreement between TIox, EnIox, and ExIox clearance.

Results—Mean ± SD iohexol clearance estimated via multisample and corrected slope-intercept methods was 2.16 ± 0.35 mL/min/kg and 2.14 ± 0.34 mL/min/kg, respectively. The derived feline correction formula was Clcorrected = (1.036 × Cluncorrected) – (0.062 × Cluncorrected2), in which Cl represents clearance. Results obtained by use of the 2 methods were in excellent agreement. Clearance corrected by use of the Heiene formula had a linear relationship with clearance corrected by use of the feline formula; however, the relationship of the feline formula with the Brochner-Mortensen formula was nonlinear. Agreement between TIox, EnIox, and ExIox clearance was excellent.

Conclusions and Clinical Relevance—The derived feline correction formula applied to slope-intercept plasma iohexol clearance accurately predicted multisample clearance in cats. Use of this technique offers an important advantage by reducing stress to cats associated with repeated blood sample collection and decreasing the costs of analysis.

Full access
in American Journal of Veterinary Research