Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Ralph P. Millard x
  • Biomechanics x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare the 3-D motion of the pelvic limb among clinically normal dogs and dogs with cranial cruciate ligament (CCL)–deficient stifle joints following tibial plateau leveling osteotomy (TPLO) or lateral fabellar–tibial suture (LFS) stabilization by use of an inverse dynamics method.

Animals—6 clinically normal dogs and 19 dogs with CCL-deficient stifle joints that had undergone TPLO (n = 13) or LFS (6) stabilization at a mean of 4 and 8 years, respectively, prior to evaluation.

Procedures—For all dogs, an inverse dynamics method was used to describe the motion of the pelvic limbs in the sagittal, frontal, and transverse planes. Motion and energy patterns for the hip, stifle, and tibiotarsal (hock) joints in all 3 planes were compared among the 3 groups.

Results—Compared with corresponding variables for clinically normal dogs, the hip joint was more extended at the beginning of the stance phase in the sagittal plane for dogs that had a TPLO performed and the maximum power across the stifle joint in the frontal plane was greater for dogs that had an LFS procedure performed. Otherwise, variables in all planes were similar among the 3 groups.

Conclusions and Clinical Relevance—Gait characteristics of the pelvic limb did not differ between dogs that underwent TPLO and dogs that underwent an LFS procedure for CCL repair and were similar to those of clinically normal dogs. Both TPLO and LFS successfully provided long-term stabilization of CCL-deficient stifle joints of dogs with minimal alterations in gait.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To use an inverse dynamics method to describe the motion of the canine pelvic limb in 3 dimensions.

Animals—6 healthy adult dogs.

Procedures—For each dog, 16 anatomic and tracking markers were used to define the center of rotation for the pelvic limb joints and a kinematic model was created to describe the motion of the pelvic limb. Kinetic, kinematic, and morphometric data were combined so that an inverse dynamics method could be used to define angular displacement, joint moment, and power of the hip, stifle, and tibiotarsal (hock) joints in the sagittal, frontal, and transverse planes.

Results—Movement and energy patterns were described for the hip, stifle, and hock joints in the sagittal, frontal, and transverse planes.

Conclusions and Clinical Relevance—Knowledge of the 3-D movement of the pelvic limb can be used to better understand its motion, moment, and energy patterns in healthy dogs and provide a referent with which gaits of dogs with pelvic limb injuries before and after surgical repair or rehabilitation can be compared and characterized. This information can then be used to guide decisions regarding treatment options for dogs with pelvic limb injuries.

Full access
in American Journal of Veterinary Research