Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Rachel E. Pollard x
  • Diagnostic Imaging x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the incidence and type of alterations in heart rate (HR), peak systolic blood pressure (PSBP), and serum biochemical variables (total bilirubin, BUN, and creatinine concentrations) associated with IV administration of ionic-iodinated contrast (IIC), nonionic-iodinated contrast (NIC), and gadolinium dimeglumine (GD) contrast media in anesthetized dogs.

Animals—280 anesthetized dogs undergoing cross-sectional imaging.

Procedures—HR and PSBP were recorded at 5-minute intervals for 20 minutes for untreated control dogs and dogs that received IIC, NIC, or GD contrast medium. The development of an HR of < 60 beats/min or > 130 beats/min that included a ≥ 20% change from baseline was considered a response. The development of PSBP of < 90 mm Hg or > 160 mm Hg that included a ≥ 20% change from baseline was considered a response. Pre- and postcontrast serum biochemical values were recorded.

Results—Of dogs receiving IIC medium, 3% (3/91) had a response in HR and 4% (4/91) had a response in PSBP at ≥ 1 time points. None of the dogs receiving NIC medium had a response in HR; 1 of 16 had a response in PSBP. Of dogs receiving GD contrast medium, 1% (1/92) had a response in HR and 4% (4/92) had a response in PSBP. Of control dogs, 2% (2/81) had a response in HR and 4% (3/81) had a response in PSBP. No serum biochemical alterations were observed.

Conclusions and Clinical Relevance—IV administration of contrast media in anesthetized dogs caused moderate bradycardia, tachycardia, hypotension, or hypertension.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the incidence and type of alterations in heart rate (HR), peak systolic blood pressure (PSBP), and serum biochemical variables (serum total bilirubin, BUN, and creatinine concentrations) associated with IV administration of ionic-iodinated contrast (IIC), nonionic-iodinated contrast (NIC), and gadolinium (GD) contrast media in anesthetized cats.

Animals—220 anesthetized cats undergoing cross-sectional imaging.

Procedures—HR and PSBP were recorded at 5-minute intervals for 20 minutes for untreated control cats and cats that received IIC, NIC, or GD contrast medium. The development of HR < 100 beats/min or > 200 beats/min that included a ≥ 20% change from baseline was considered a response. The development of PSBP of < 90 mm Hg or > 170 mm Hg that included a ≥ 20% change from baseline was considered a response. Pre- and postcontrast serum biochemical values were recorded.

Results—Of cats receiving IIC medium, 2% (1/60) had a response in HR at ≥ 1 time point. Of cats receiving IIC medium, 7% (4/60) had a response in PSBP. None of the cats receiving NIC medium had a response in HR; 2 of 12 had a response in PSBP. Of cats receiving GD contrast medium, 6% (5/83) had a response in HR and 8% (7/83) had a response in PSBP. None of the control cats had a response in HR or PSBP. No serum biochemical alterations were observed.

Conclusions and Clinical Relevance—IV administration of iodine and GD contrast media in anesthetized cats was associated with changes in HR and PSBP.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the degree of fluctuation in tracheal dimensions between forced inspiration and passive expiration in healthy dogs of various sizes.

Animals—10 client-owned dogs with no evidence of respiratory disease or tracheal collapse.

Procedures—Anesthetized dogs underwent a computed tomographic examination during forced inspiration and induced but passive expiration to assess tracheal dimensions. Tracheal height, width, and cross-sectional area were measured at inspiration and expiration, and percentage change in dimension was calculated for each variable.

Results—Measurements were acquired in 10 dogs that ranged in body weight from 3.5 to 47.8 kg. Tracheal cross-sectional area at inspiration and expiration was associated with body weight at all 3 tracheal regions. The percentage change in tracheal height and cross-sectional area was associated with body weight in the cervical but not the thoracic-inlet or thoracic regions. The tracheal cross-sectional area changed by as much as 24.2% (mean, 5.5%), 20.0% (mean, 6.0%), and 18.6% (mean, 6.0%) in the cervical, thoracic-inlet, and thoracic regions, respectively.

Conclusions and Clinical Relevance—The change in tracheal cross-sectional area from inspiration to expiration was as great as 24% in healthy dogs, and the area was associated with body weight. Respiratory fluctuations appeared to result in changes in tracheal dimension during respiration similar to those reported for humans.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of regional variation, interobserver variability, and vessel selection on quantitative vascular variables derived by dynamic contrast-enhanced computed tomography (DCE-CT) of the brain of clinically normal dogs.

Animals—14 adult dogs with no evidence of CNS dysfunction.

Procedures—Dogs were randomly assigned to 4 groups, and DCE-CT was performed at the level of the frontal lobe, rostral portion of the parietal-temporal lobes, caudal portions of the parietal-temporal lobes, or occipital lobe–cerebellum for groups 1 to 4, respectively. Cerebral blood flow (CBF), cerebral blood volume (CBV), and permeability in gray and white matter for both a large and small artery were calculated and compared. Values among 3 observers and 4 regions of the brain were calculated and compared.

Results—Significant interobserver variability was detected for CBF and permeability in white matter. Values calculated for large and small arteries were correlated for CBV and CBF but not for permeability. Overall mean ± SD for CBF, CBV, and permeability in gray matter was 53.5 ± 27.7 mL/min/100 g, 2.9 ± 1.4 mL/100 g, and 1.4 ± 2.2 mL/min/100 g, respectively. Mean for CBF, CBV, and permeability in white matter was 44.2 ± 28.5 mL/min/100 g, 2.5 ± 1.5 mL/100 g, and 0.9 ± 0.7 mL/min/100 g, respectively. Values did not differ significantly among brain regions.

Conclusions and Clinical Relevance—Significant regional variations were not detected for quantitative vascular variables in the brain of clinically normal dogs. However, interobserver variability and vessel selection have an important role in variable estimation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine ultrasonographic characteristics of the thyroid gland in healthy small-, medium-, and large-breed dogs and evaluate the relationships of thyroid gland size and volume with body weight and body surface area (BSA).

Animals—72 dogs of small (6 Toy and 6 Miniature Poodles), medium (12 Beagles), and large breeds (12 Akitas and 36 Golden Retrievers).

Procedure—Each dog's thyroid gland was examined ultrasonographically with a 10- to 5-MHz multifrequency linear-array transducer. Size, shape, echogenicity, and homogeneity of thyroid lobes were evaluated on longitudinal and transverse images. Thyroid lobe volume was estimated by use of the equation for an ellipsoid (π/6 [length × height × width]).

Results—Thyroid lobes appeared fusiform or elliptical on longitudinal images and triangular or round to oval on transverse images. In most dogs, thyroid lobes were hyperechoic or isoechoic, compared with surrounding musculature, and had a homogeneous echogenic pattern. Mean length, width, height, and volume of thyroid lobes were significantly greater in Akitas and Golden Retrievers, compared with findings in Beagles or Poodles; mean length, width, and height were significantly greater in Beagles, compared with findings in Poodles. Total thyroid gland volume correlated with body weight (r = 0.73) and BSA (r = 0.74).

Conclusions and Clinical Relevance—Among the dog breeds examined ultrasonographically, thyroid lobe size and volume were more variable than shape, echogenicity, and homogeneity. The correlation of thyroid gland volume with BSA suggests that size of the dog, rather than breed, should be considered when assessing thyroid glands ultrasonographically.

Full access
in American Journal of Veterinary Research