Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Philip H. Kass x
- Infectious Disease x
- Refine by Access: All Content x
Abstract
Objective—To evaluate orally administered famciclovir for treatment of cats with experimentally induced disease attributable to feline herpesvirus type-1 (FHV-1).
Animals—16 nonvaccinated specific-pathogen-free cats.
Procedures—Cats were treated orally with famciclovir (90 mg/kg; n = 10) or a similar volume of lactose (400 mg; 6) 3 times/d for 21 days. Cats were inoculated with FHV-1 and administered the first treatment dose on day 0. Disease score; weight; results of urinalysis, serum biochemical analysis, and CBC; histologic conjunctivitis score; herpetic DNA shedding; goblet cell density; anti-FHV-1 antibody concentration; and plasma penciclovir concentration were measured.
Results—On days 4 to 18 following inoculation, disease scores were lower in famciclovir-treated cats than in lactose-treated cats. Lactose-treated cats decreased in weight during the first 7 days after inoculation, but famciclovir-treated cats increased in weight throughout the study. Percentage change in weight was greater in famciclovir-treated cats on days 7 and 14 than in lactose-treated cats. Serum globulin concentration was lower on days 3 through 9, conjunctivitis histologic score was lower on day 14, herpetic DNA was shed less frequently throughout the study, goblet cell density was greater on day 21, and circulating anti-FHV-1 antibody concentration at study end was lower in famciclovir-treated cats, compared with these measurements in lactose-treated cats. Approximate peak plasma penciclovir concentration was 2.0 μg/mL.
Conclusions and Clinical Relevance—Famciclovir administration improved outcomes for systemic, ophthalmic, clinicopathologic, virologic, and histologic variables in cats experimentally infected with FHV-1. Adjunctive topical mucinomimetic and antimicrobial treatments may also be necessary.
Abstract
Objective—To determine within a cat shelter effects of dietary lysine supplementation on nasal and ocular disease and detection of nucleic acids of Chlamydophila felis, feline calicivirus (FCV), and feline herpesvirus (FHV-1).
Animals—261 adult cats.
Procedures—Cats were fed a diet containing 1.7% (basal diet; control cats) or 5.7% (supplemented diet; treated cats) lysine for 4 weeks. Plasma concentrations of lysine and arginine were assessed at the beginning (baseline) and end of the study. Three times a week, cats were assigned a clinical score based on evidence of nasal and ocular disease. Conjunctival and oropharyngeal swab specimens were tested for FHV-1, FCV, and C felis nucleic acids once a week.
Results—Data were collected from 123, 74, 59, and 47 cats during study weeks 1, 2, 3, and 4, respectively. By study end, plasma lysine concentration in treated cats was greater than that in control cats and had increased from baseline. There was no difference between dietary groups in the proportion of cats developing mild disease. However, more treated cats than control cats developed moderate to severe disease during week 4. During week 2, FHV-1 DNA was detected more commonly in swab specimens from treated versus control cats.
Conclusions and Clinical Relevance—Dietary lysine supplementation in the amount used in our study was not a successful means of controlling infectious upper respiratory disease within a cat shelter. Rather, it led to increases in disease severity and the incidence of detection of FHV-1 DNA in oropharyngeal or conjunctival mucosal swab specimens at certain time points.
Abstract
Objective—To investigate safety and efficacy of a cyprinid herpesvirus type 3 (CyHV3) modified-live virus vaccine for the prevention of koi herpesvirus disease (KHVd).
Animals—420 healthy koi (Cyprinus carpio koi).
Procedures—Fish were vaccinated with a 1× dose or 10× overdose of CyHV3 modified-live virus vaccine or a placebo through bath exposure in tanks at 22°C. Horizontal transmission of vaccine virus was evaluated by commingling unvaccinated and vaccinated fish. Efficacy was evaluated by challenge exposure of vaccinated and naïve fish to a wild-type virus. Fish that died were submitted for quantitative PCR assay for CyHV3 and histologic evaluation.
Results—The CyHV3 vaccine was safe and efficacious, even at a 10× overdose. Vaccine-associated mortality rate was inversely associated with body weight, with a cumulative mortality rate of 9.4% (18/192) in fish weighing ≤ 87 g and no deaths in fish weighing > 87 g (0/48). Horizontal transfer of vaccine virus from vaccinates to naïve fish was negligible. For efficacy, the vaccine provided a significant reduction in mortality rate after challenge exposure to a wild-type virus, with a prevented fraction of 0.83 versus the placebo control fish.
Conclusions and Clinical Relevance—KHVd is highly contagious and commonly leads to deaths in 80% to 100% of exposed fish, representing a major threat to koi and common carp populations throughout the world. The CyHV3 modified-live virus vaccine had a favorable safety profile and was an effective vaccine for the control of KHVd in koi weighing > 87 g.