Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Noah Cohen x
  • Antimicrobials x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To evaluate the effect of volume of IV regional limb perfusion (IVRLP) on amikacin concentrations in synovial and interstitial fluid of horses.

ANIMALS 8 healthy adult horses.

PROCEDURES Each forelimb was randomly assigned to receive IVRLP with 4 mL of amikacin sulfate solution (250 mg/mL) plus 56 mL (total volume, 60 mL) or 6 mL (total volume, 10 mL) of lactated Ringer solution. Horses were anesthetized, and baseline synovial and interstitial fluid samples were collected. A tourniquet was placed, and the assigned treatment was administered via the lateral palmar digital vein. Venous blood pressure in the distal portion of the limb was recorded. Additional synovial fluid samples were collected 30 minutes (just before tourniquet removal) and 24 hours after IVRLP began; additional interstitial fluid samples were collected 6 and 24 hours after IVRLP began.

RESULTS 30 minutes after IVRLP began, mean amikacin concentration in synovial fluid was significantly greater for the large-volume (459 μg/mL) versus small-volume (70 μg/mL) treatment. Six hours after IVRLP, mean concentration in interstitial fluid was greater for the large-volume (723 μg/mL) versus small-volume (21 μg/mL) treatment. Peak venous blood pressure after large-volume IVRLP was significantly higher than after small-volume IVRLP, with no difference between treatments in time required for pressure to return to baseline.

CONCLUSIONS AND CLINICAL RELEVANCE Study findings suggested that large-volume IVRLP would deliver more amikacin to metacarpophalangeal joints of horses than would small-volume IVRLP, without a clinically relevant effect on local venous blood pressure, potentially increasing treatment efficacy.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of gallium maltolate (GaM) after intragastric administration in healthy foals.

Animals—6 healthy neonatal foals.

Procedures—Each foal received GaM (20 mg/kg) by intragastric administration. Blood samples were obtained before (time 0) and at 0.25, 0.5, 1, 2, 4, 8, 12, 24, 36, and 48 hours after GaM administration for determination of serum gallium concentrations by use of inductively coupled plasma mass spectroscopy.

Results—Mean ± SD pharmacokinetic variables were as follows: peak serum gallium concentration, 1,079 ± 311 ng/mL; time to peak serum concentration, 4.3 ± 2.0 hours; area under the serum concentration versus time curve, 40,215 ± 8,420 ng/mL/h; mean residence time, 39.5 ± 17.2 hours; area under the moment curve, 1,636,554 ± 931,458 ng([h]2/mL); and terminal half-life, 26.6 ± 11.6 hours. The mean serum concentration of gallium at 12 hours was 756 ± 195 ng/mL.

Conclusions and Clinical Relevance—Gallium maltolate administered via nasogastric tube at a dose of 20 mg/kg to neonatal foals resulted in gallium serum concentrations considered sufficient to suppress growth or kill Rhodococcus equi in macrophages and other infected tissues.

Full access
in American Journal of Veterinary Research