Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Melissa J. Beall x
- Infectious Disease x
- Refine by Access: All Content x
Abstract
OBJECTIVE
To compare the performance of 5 synthetic peptide–based ELISAs with that of 3 commercially available immunofluorescent assays (IFAs) for serologic diagnosis of anaplasmosis and ehrlichiosis in dogs.
SAMPLE
A convenience set of 109 serum samples obtained before and at various times after inoculation for 23 dogs that were experimentally infected with Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Ehrlichia chaffeensis, or Ehrlichia ewingii and 1 uninfected control dog in previous studies.
PROCEDURES
All serum samples were assessed with 5 synthetic peptide–based ELISAs designed to detect antibodies against A phagocytophilum, A platys, E canis, E chaffeensis, and E ewingii and 3 whole organism–based IFAs designed to detect antibodies against A phagocytophilum, E canis, and E chaffeensis. The species-specific seroreactivity, cross-reactivity with the other tick-borne pathogens (TBPs), and diagnostic sensitivity and specificity were calculated for each assay and compared among assays.
RESULTS
All serum samples obtained from dogs experimentally infected with a TBP yielded positive results on a serologic assay specific for that pathogen. In general, sensitivity was comparable between ELISAs and IFAs and tended to increase with duration after inoculation. Compared with the IFAs, the corresponding ELISAs were highly specific and rarely cross-reacted with antibodies against other TBPs.
CONCLUSIONS AND CLINICAL RELEVANCE
Results suggested that peptide-based ELISAs had enhanced specificity relative to whole organism–based IFAs for detection of antibodies against Anaplasma and Ehrlichia spp, which should facilitate accurate diagnosis and may help detect dogs coinfected with multiple TBPs.
Abstract
Objective—To evaluate the sensitivity and specificity of a commercially available in-clinic ELISA for detection of heartworm infection and tick-borne diseases in dogs.
Sample Population—846 serum, plasma, or blood samples obtained from dogs.
Procedures—Samples were evaluated via the in-clinic ELISA to detect antibodies against Anaplasma phagocytophilum, Ehrlichia canis, and Borrelia burgdorferi and Dirofilaria immitis (heartworm) antigen. True infection or immunologic status of samples was assessed by use of results of necropsy, an antigen assay for D immitis, and immunofluorescence assay or western blot analysis for antibodies against B burgdorferi, E canis, and A phagocytophilum.
Results—Sensitivity and specificity of the in-clinic ELISA for detection of heartworm antigen (99.2% and 100%, respectively), antibodies against B burgdorferi (98.8% and 100%, respectively), and antibodies against E canis (96.2% and 100%, respectively) were similar to results for a similar commercial ELISA. In samples obtained from dogs in the northeast and upper Midwest of the United States, sensitivity and specificity of the in-clinic ELISA for antibodies against Anaplasma spp were 99.1% and 100%, respectively, compared with results for an immunofluorescence assay. Samples from 2 dogs experimentally infected with the NY18 strain of A phagocytophilum were tested by use of the in-clinic ELISA, and antibodies against A phagocytophilum were detected by 8 days after inoculation. Antibodies against Anaplasma platys in experimentally infected dogs cross-reacted with the A phagocytophilum analyte. Coinfections were identified in several of the canine serum samples.
Conclusions and Clinical Relevance—The commercially available in-clinic ELISA could be used by veterinarians to screen dogs for heartworm infection and for exposure to tick-borne pathogens.