Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Melissa A. Kennedy x
  • Infectious Disease x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine whether expression of feline coronavirus (FCoV) 7b protein, as indicated by the presence of specific serum antibodies, consistently correlated with occurrence of feline infectious peritonitis (FIP) in cats.

Sample Population—95 serum samples submitted for various diagnostic assays and 20 samples from specific-pathogen–free cats tested as negative control samples.

Procedures—The 7b gene from a virulent strain of FCoV was cloned into a protein expression vector. The resultant recombinant protein was produced and used in antibody detection assays via western blot analysis of serum samples. Results were compared with those of an immunofluorescence assay (IFA) for FCoV-specific antibody and correlated with health status.

Results—Healthy IFA-seronegative cats were seronegative for antibodies against the 7b protein. Some healthy cats with detectable FCoV-specific antibodies as determined via IFA were seronegative for antibodies against the 7b protein. Serum from cats with FIP had antibodies against the 7b protein, including cats with negative results via conventional IFA. However, some healthy cats, as well as cats with conditions other than FIP that were seropositive to FCoV via IFA, were also seropositive for the 7b protein.

Conclusions and Clinical Relevance—Expression of the 7b protein, as indicated by detection of antibodies against the protein, was found in most FCoV-infected cats. Seropositivity for this protein was not specific for the FCoV virulent biotype or a diagnosis of FIP.

Full access
in American Journal of Veterinary Research



To determine whether exposure to UV germicidal irradiation (UVGI) reduces concentrations of viable aerosolized microorganisms (attenuated strains of common veterinary pathogens) in a simulated heating, ventilation, and air conditioning (HVAC) system.


42 air samples seeded with bacteriophage MS2 or attenuated strains of Bordetella bronchiseptica, feline calicivirus, feline herpesvirus-1, canine parvovirus, or canine distemper virus (6/microorganism) or with no microorganisms added (6).


A simulated HVAC unit was built that included a nebulizer to aerosolize microorganisms suspended in phosphate-buffered water, a fan to produce airflow, 2 UVGI bulb systems, and an impinger for air sampling. Ten-minute trials (3 with UVGI, 3 without UVGI, and 1 negative control) were conducted for each microorganism. Impingers collected microorganisms into phosphate-buffered water for subsequent quantification with culture-based assays. Results for samples yielding no target microorganisms were recorded as the assay's lower limit of detection. Statistical analysis was not performed.


The UVGI treatment resulted in subjectively lower concentrations of viable MS2, B bronchiseptica, and canine distemper virus (arithmetic mean ± SD log10 microorganism reduction, 2.57 ± 0.47, ≥ 3.45 ± 0.24, and ≥ 1.50 ± 0.25, respectively) collected from air. Feline herpesvirus-1 was detected in only 1 sample without and no samples with UVGI treatment. Feline calicivirus and canine parvovirus were not detectable in any collected samples.


Results for some surrogates of veterinary pathogens suggested a potential benefit to supplementing manual disinfection practices with UVGI-based air cleaning systems in animal care environments. Further research is needed to investigate the utility of UVGI in operating HVAC systems.

Full access
in American Journal of Veterinary Research


Objective—To analyze the 7a7b genes of the feline coronavirus (FCoV) of cheetahs, which are believed to play a role in virulence of this virus.

Sample Population—Biologic samples collected during a 4-year period from 5 cheetahs at the same institution and at 1 time point from 4 cheetahs at different institutions.

Procedures—Samples were first screened for FCoV via a reverse transcription-PCR procedure involving primers that encompassed the 3′-untranslated region. Samples that yielded positive assay results were analyzed by use of primers that targeted the 7a7b open reading frames. The nucleotide sequences of the 7a7b amplification products were determined and analyzed.

Results—In most isolates, substantial deletional mutations in the 7a gene were detected that would result in aberrant or no expression of the 7a product because of altered reading frames. Although the 7b gene was also found to contain mutations, these were primarily point mutations resulting in minor amino acid changes. The coronavirus associated with 1 cheetah with feline infectious peritonitis had intact 7a and 7b genes.

Conclusions and Clinical Relevance—The data suggest that mutations arise readily in the 7a region and may remain stable in FCoV of cheetahs. In contrast, an intact 7b gene may be necessary for in vivo virus infection and replication. Persistent infection with FCoV in a cheetah population results in continued virus circulation and may lead to a quasispecies of virus variants.

Full access
in American Journal of Veterinary Research