Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Mauria O'Brien x
  • Clinical Pathology x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To determine the predominant thromboxane (TX) metabolite in urine of healthy cats, evaluate whether the method of sample collection would impact concentration of that metabolite, and propose a reference interval for that metabolite in urine of healthy cats.

ANIMALS 17 cats (11 purpose-bred domestic shorthair cats, 5 client-owned domestic shorthair cats, and 1 client-owned Persian cat).

PROCEDURES All cats were deemed healthy on the basis of results for physical examination, a CBC, serum biochemical analysis, urinalysis, and measurement of prothrombin time and activated partial thromboplastin time. Voided and cystocentesis urine samples (or both) were collected. Aliquots of urine were stored at −80°C until analysis. Concentrations of TXB2, 11-dehydroTXB2, and 2,3 dinorTXB2 were measured with commercially available ELISA kits. Urinary creatinine concentration was also measured.

RESULTS 11-dehydroTXB2 was the most abundant compound, representing (mean ± SD) 59 ± 18% of the total amount of TX detected. In all samples, the concentration of 11-dehydroTXB2 was greater than that of 2,3 dinorTXB2 (mean, 4.2 ± 2.7-fold as high). Mean concentration of 11-dehydroTXB2 for the 17 cats was 0.57 ± 0.47 ng/mg of creatinine. A reference interval (based on the 5% to 95% confidence interval) of 0.10 to 2.1 ng of 11-dehydroTXB2/mg of creatinine was proposed for healthy cats.

CONCLUSIONS AND CLINICAL RELEVANCE In this study, 11-dehydroTXB2 was the major TX metabolite in feline urine. Measurement of this metabolite may represent a noninvasive, convenient method for monitoring in vivo platelet activation in cats at risk for thromboembolism.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate canine erythrocyte concentrates (ECs) for the presence of procoagulant phospholipid (PPL), determine whether PPL concentration changes during the course of storage of ECs, and ascertain whether prestorage leukoreduction (removal of leukocytes via gravity filtration) reduces the development of PPL.

SAMPLE 10 whole blood units (420 g each) collected from 10 random-source, clinically normal dogs (1 U/dog).

PROCEDURES The dogs were randomized to 1 of 2 groups. Of the 10 whole blood units collected, 5 were processed through a standard method, and 5 underwent leukoreduction. Whole blood units were processed to generate ECs, from which aliquots were aseptically collected from each unit weekly for 5 weeks. Supernatants from the concentrates were evaluated for procoagulant activity, which was converted to PPL concentration, by use of an automated assay and by measurement of real-time thrombin generation.

RESULTS Supernatants from stored canine ECs contained procoagulant activity as measured by both assays. In general, the PPL concentration gradually increased during the storage period, but leukoreduction reduced the development of increased procoagulant activity over time.

CONCLUSIONS AND CLINICAL RELEVANCE The presence of PPL in canine ECs may be associated with procoagulant and proinflammatory effects in vivo, which could have adverse consequences for dogs treated with ECs.

Full access
in American Journal of Veterinary Research